
Adding Artificial Barriers in GPU kernels
Quey-Liang Kao, Hao-Ping Kang*

*National Tsing Hua University, Department of Computer Science
SCOPE Lab

Writing an efficient GPU program that can fully utilize the
computational power of GPUs is a difficult job, owing to the
complex relations among programming flows and the architecture
parameters. In this research, we would like to answer the question
of artificial barrier problem, i.e. when and where to add artificial
synchronization can improve the performance of CUDA programs.

I. Motivation

Vecadd_Origin (array A, B, C , int len){
 for i from 0 to len by TF
 parallel for j from i to i+TF
 C[j] = A[j] + B[j];
}

Figure 1. Original Kernel

Figure 3. The execution time in microseconds

To evaluate our performance model and compilation pass, We
rewrite the vecadd kernel in CUDA SDK with a tuning parameter
Tiling Factor(TF). The pseudo code is as Figure1.

V. Evaluation
• We discover a counter-intuitive phenomenon that GPU kernels

may get improvement from non-necessary barriers.
• We give the performance model to describe the phenomenon.
• We design a compilation pass in the framework of GPU Ocelot,

which analyzes an input kernel, retrieve its feature, and insert
barriers in the right places.

• Using our pass, we obtain further improvement on memory-
intensive kernels.

• This research shows the possibility to improve existing kernels
without much effort.

VII. Contributions

Most of the performance optimization guidelines suggest that
one should eliminate as many synchronizations as possible.
Nonetheless, our previous study shows that it may not be true on
GPU. We give a performance model to explain the possible
reasons for such counter intuitive phenomenon as follows.
• All/Most of the threads access to device memory and the

accessed data has some level of locality
• Communication dominates the whole execution time
• An additional barrier regulates warp execution

II. Artificial Barrier Synchronizations

GPU Ocelot is a dynamic compilation framework for GPU
computing on multiple targets, including an translator to LLVM[16]
for x86 multi-core CPUs, AMD GPUs, NVIDIA GPUs, etc. In this
work, we mainly take advantage of GPU Ocelot’s PTX-to-PTX
transformation infrastructure.

III. GPU Ocelot

We design a pass and embed it into the GPU Ocelot’s
compilation framework, so that we can add artificial barriers
automatically following the guidelines mentioned in section II.

During the compilation phase of a CUDA kernel, two attributes
are collected, which are
• T, total number of instructions, and
• R, the ratio of memory operations in the T instructions.
Once R and T over some thresholds, we add a barrier at the end of
the code segment. In this work, we choose the threshold values by
heuristic.

IV. Methods

BB2_2:
 ld.global.f32 %f1, [%rd18];
 ld.global.f32 %f2, [%rd17];
 add.f32 %f3, %f2, %f1;
 st.global.f32 [%rd16], %f3;
 cvt.s64.s32 %rd15, %r5;
 add.s64 %rd18, %rd18, %rd15;
 add.s64 %rd17, %rd17, %rd15;
 add.s64 %rd16, %rd16, %rd15;
 add.s32 %r18, %r18, 1;
 setp.lt.s32 %p2, %r18, %r4;
 @%p2 bra BB2_2;
 bar.sync 0; //insert here

Figure 2. Compilation Phase Processing

After the kernel pass through the framework of GPU Ocelot,
our pass can read the PTX code and analyze it. As shown in Figure
2, the pass adds an artificial barrier at the final line.

We run the experiment on Tesla m2090. As shown in Figure 3,
kernel processed with barrier performs better than original kernel
when TF is greater than 1, with improvement up to 4%. That is to
say, our pass to adding artificial barrier synchronizations is a novel
tool to accelerate a CUDA kernel.

VI. Results

1. Kao, Q., Kang, H., & Lee, C. In-Kernel CUDA Profiler and Its
Applications in Artificial Barriers Analysis

2. Lo, S., Lee, C., Kao, Q., Chung, I., & Chung, Y. Improving GPU
Memory Performance with Artificial Barrier Synchronization.

VIII. References

	投影片 1

