
Contact:

 Chau-Yi Chou

 cychou@nchc.narl.org.tw

Conclusion

Writing a GPU program is easy to accomplish

via this library installed on NCHC platforms.

References
[1] Tony W. H Sheu, at al. (2000), JCP

[2] Chih-Wei Hsieh, at al. (2010), ISPA10

[3] Chih-Wei Hsieh, at al. (2010), PDPTA10

[4] Sheng-Hsiu Kuo, at al. (2010), HPCTA10

[5] Sheng-Hsiu Kuo, at al. (2010), ISSN: 2010-4065

Method

Consider a two-dimensional convection-

diffusion-reaction equation [1] in Eq. (1).

One can easily find these parameters of

Eq.(1) from own PDE, and then they call the

following libraries.

• pCDR_init(u, v, k, c, dx, dy, dt, width, height)

• pCDR_free()

• pCDR_SOR_steady(FI, f, tolerance,

MAX_STEP, Relax, width, height)

• pCDR_SOR_time(FI, f, dt, Time_step, width,

height)

• pCDR_CG_steady(FI, f, tolerance,

MAX_STEP, Relax, width, height)

• pCDR_CG_time(FI, f, dt, Time_step, width,

height)

Introduction

Parallel CDR library (pCDR) is a set of code

for solving a convection–diffusion–reaction

(CDR) scalar transport equation using GPU

cards to get correct and precise results in a

short time. This equation is practically

important because the working equations of

many cases fall into this category. The main

purpose of the pCDR library is to make

program on GPU more easily for scientists.

The latest version provides two dimensional

CDR scheme to solve real transient and

steady state problems.

One can easily write own GPU program via

our template program as shown in Fig. 1.

Then, a programmer enjoys the benefit of

GPU through his C program only. Fig.2

demonstrates the flowchart of NCHC pCDR. A

programmer is responsible to the PC side

only. However, our libraries handle the GPU

computation and data transfer between the

CPU and GPU.

Results

Parabolic equation

This study considers 5 Model Problems (MP)

performed on AMD Phenom 9850 Quad-Core

2.5GHz (CPU) vs. Nvidia GeForce GTX 280

(GPU).

MP1: φt = 𝛻2φ

MP2: φt= 𝛻2φ − φx − φy − φ

MP3: φt = 𝛻2φ + A(x, y)φx +B(x, y)φy −φ

MP4: φt = 𝛻2φ + φx +φy + φ + S1(x, y, t)

MP5: φt= 𝛻2φ + xφx +yφy − φ + S2(x, y, t)

where

A x, y = sin ax cos ay , B x, y = −cos ax sin ay

S1 x, y, t = 1 + xy cos t − 1 + x 1 + y sin t

S2 x, y, t = π2 x2 + y2 e−tsin πxy − 2πxye−tcos πxy

Fig. 3 shows the 5 MPs speedup. MP1

obtains around 11 times faster than one core-

CPU on 400×400 grids.

Fig. 5 shows that Kuo at al. [5] earned 8.53

times faster for solving the pressure Poisson

equation (PPE) and 6.25 times faster for

solving the two-phase problem than one core-

CPU. These results were performed on Intel

X5472 (CPU) versus Nvidia Tesla C1060

(GPU).

NCHC pCDR

A GPU Implementation Library

Chau-Yi Chou, Chih-Wei Hsieh, Yu-Fen Cheng

National Center for High-performance computing, Taiwan

(1)

int main(void) {
 //allocate host memory to receive data
 cudaMallocHost((void **) &FI, size);
 cudaMallocHost((void **) &f, size);

 //set up initial data
 u, v, k, c

 //initial CDR coefficient
 pCDR_init(u, v, k, c, dx, dy, 0.0, width,height);

 //solve Red-Black SOR to steady state
 pCDR_SOR_steady
 (FI, f, 1.0E-12, MAX_STEP, Relax, width, height);

 //release memory
 pCDR_free();
}

Fig. 1 Template program

Fig. 2 NCHC pCDR flowchart

Fig. 3 Model Problems Speedup

Two-phase flow
This problem may requires huge computing

resources. Now consider a bubble merging

problem with coaxial coalescence as shown in

Fig 4.

Fig. 4 Merger of two rising bubbles at

different non-dimensional times

Fig. 5 PPE and two-phase problem speedup

