CS5321 Numerical Optimization Homework 6

Due May 21

1. (50%) Many of famous computer science problems can be written as a linear programming problem. Considering the following weighted directed graph, which has 7 nodes. Let node a be the source and node g be the sink.

(a) Let the weights be capacity. Formulate the maximum flow problem as a linear programming problem. (Hint: capacity constraints and flow-balanced constraint.)
(b) Let the weight be capacity. Formulate the minimum cut problem as a linear programming problem.
(c) Show the problems in (b) and (c) are dual to each other.
(d) Let the weights be distances. Formulate the shortest path problem as a linear programming problem.
(e) What is the dual problem of the shortest path problem?
(f) (Bonus 20\%) Ignore the direction of edges. Formulate the minimum spanning tree problem as an integer linear programming problem.
2. (50%) Implement the simplex method for linear programming. The pseudo code is in Figure 1. The calling interface will be like
[x, case] = mysimplex (c, A, b, x0)
which solves

$$
\begin{aligned}
\min _{\vec{x}} & \vec{c}^{T} \vec{x} \\
\text { subject to } & A \vec{x}=\vec{b} \\
& \vec{x} \geq 0
\end{aligned}
$$

The return value case should be 0,1 , or 2 , which means (0) solved, (1) unbounded, (2) infeasible. You can assume \vec{x}_{0} is a feasible point. Also, print out each \vec{x}_{i} during the computation.
(1) Given a basic feasible point \vec{x}_{0} and the corresponding index set \mathcal{B}_{0} and \mathcal{N}_{0}.
(2) For $k=0,1, \ldots$

Let $B_{k}=A\left(:, \mathcal{B}_{k}\right), N_{k}=A\left(:, \mathcal{N}_{k}\right), \vec{x}_{B}=\vec{x}_{k}\left(\mathcal{B}_{k}\right), \vec{x}_{N}=\vec{x}_{k}\left(\mathcal{N}_{k}\right)$, and $\vec{c}_{B}=\vec{c}_{k}\left(\mathcal{B}_{k}\right), \vec{c}_{N}=\vec{c}_{k}\left(\mathcal{N}_{k}\right)$.
(4) Compute $\vec{s}_{k}=\vec{c}_{N}-N_{k}^{T} B_{k}^{-1} \vec{c}_{B}$ (pricing)
(5) If $\vec{s}_{k} \geq 0$, return the solution \vec{x}_{k}. (found optimal solution)
(6) \quad Select $q_{k} \in \mathcal{N}_{k}$ such that $\vec{s}_{k}\left(i_{q}\right)<0$, where i_{q} is the index of q_{k} in \mathcal{N}_{k}
(7) Compute $\vec{d}_{k}=B_{k}^{-1} A_{k}\left(:, q_{k}\right)$. (search direction)
(8) If $\vec{d}_{k} \leq 0$, return unbounded. (unbounded case)

Compute $\left[\gamma_{k}, i_{p}\right]=\min _{i, \vec{d}_{k}(i)>0} \frac{\vec{x}_{B}(i)}{\vec{d}_{k}(i)}$ (ratio test)
(The first return value is the minimum ratio;
the second return value is the index of the minimum ratio.)
$x_{k+1}\binom{\mathcal{B}}{\mathcal{N}}=\binom{\vec{x}_{B}}{\vec{x}_{N}}+\gamma_{k}\binom{-\vec{d}_{k}}{\vec{e}_{i_{q}}}$
$\left(\vec{e}_{i_{q}}=(0, \ldots, 1, \ldots, 0)^{T}\right.$ is a unit vector with i_{q} th element 1.)
Let the i_{p} th element in \mathcal{B} be p_{k}. (pivoting)
$\mathcal{B}_{k+1}=\left(\mathcal{B}_{k}-\left\{p_{k}\right\}\right) \cup\left\{q_{k}\right\}, \mathcal{N}_{k+1}=\left(\mathcal{N}_{k}-\left\{q_{k}\right\}\right) \cup\left\{p_{k}\right\}$

Figure 1: The simplex method for solving (minimization) linear programming

