CS5321 Numerical Optimization Homework 6

Due May 21

1. (40%) Prove the formula of SR1.
(a) Verify the Sherman-Morrison-Woodbury formula.

For $\hat{A}=A+\vec{a} \vec{b}^{T}$,

$$
\hat{A}^{-1}=A^{-1}-\frac{A^{-1} \vec{a} \vec{b}^{T} A^{-1}}{1+\vec{b}^{T} A^{-1} \vec{a}} .
$$

(Hint: prove $\hat{A} \hat{A}^{-1}=\hat{A}^{-1} \hat{A}=I$.)
(b) Use (a) and the fact that B_{k} is symmetric to prove that if

$$
B_{k}=B_{k-1}+\frac{\left(\vec{y}_{k}-B_{k-1} \vec{s}_{k}\right)\left(\vec{y}_{k}-B_{k-1} \vec{s}_{k}\right)^{T}}{\left(\vec{y}_{k}-B_{k-1} \vec{s}_{k}\right)^{T} \vec{s}_{k}},
$$

then

$$
B_{k}^{-1}=B_{k-1}^{-1}+\frac{\left(\vec{s}_{k}-B_{k-1}^{-1} \vec{y}_{k}\right)\left(\vec{s}_{k}-B_{k-1}^{-1} \vec{y}_{k}\right)^{T}}{\vec{y}_{k}^{T}\left(\vec{s}_{k}-B_{k-1}^{-1} \vec{y}_{k}\right)} .
$$

2. (20%) The steepest descent method has search direction $\vec{p}_{k}=-\vec{g}_{k}$ and step length $\alpha_{k}=\frac{\vec{g}_{k}^{T} \vec{g}_{k}}{\vec{g}_{k}^{T} H_{k} \vec{g}_{k}}$. Prove that for a quadratic function

$$
f(\vec{x})=\frac{1}{2} \vec{x}^{T} H \vec{x}+\vec{g}^{T} \vec{x}+f,
$$

$\vec{p}_{k} \perp \vec{p}_{k+1}$.
3. (40%) In the class, we had shown that in CG,

$$
\alpha_{k}=\frac{-\vec{p}_{k}^{T} \vec{g}_{k}}{\vec{p}_{k}^{T} H \vec{p}_{k}} \text { and } \beta_{k}=\frac{\vec{p}_{k-1}^{T} H \vec{g}_{k}}{\vec{p}_{k-1}^{T} H \vec{p}_{k-1}}
$$

But in the handout, it says

$$
\alpha_{k}=\frac{\vec{g}_{k}^{T} \vec{g}_{k}}{\vec{p}_{k}^{T} H \vec{p}_{k}} \text { and } \beta_{k}=\frac{\vec{g}_{k}^{T} \vec{g}_{k}}{\vec{g}_{k-1}^{T} \vec{g}_{k-1}}
$$

To bridge this gap, let's prove the following equalities
(a) $\vec{g}_{k}^{T} \vec{p}_{k-1}=0$
(b) $\vec{g}_{k}^{T} \vec{g}_{k}=-\vec{g}_{k}^{T} \vec{p}_{k}$
(c) Prove those two relations together (Hint: by induction!!)

$$
\begin{gathered}
\vec{g}_{k}^{T} \vec{p}_{j}=0 \text { for } k>j, \\
\vec{p}_{k}^{T} H \vec{p}_{j}=0 \text { for } k \neq j
\end{gathered}
$$

(d) Prove $\beta_{k+1}=\frac{\vec{g}_{k}^{T} \vec{g}_{k}}{\vec{g}_{k-1}^{T} \vec{g}_{k-1}}$. (You may use the result of (c) directly even if you cannot prove it.)

