CS5321 Numerical Optimization Homework 4

Multi-dimensional Optimization

Due April 23, 2012

Consider the Beale's function

$$
f\left(x_{1}, x_{2}\right)=\left(1.5-x_{1}+x_{1} x_{2}\right)^{2}+\left(2.5-x_{1}+x_{1} x_{2}^{2}\right)^{2}+\left(2.65-x_{1}+x_{1} x_{2}^{3}\right)^{2}
$$

for $-4.5 \leq x_{1}, x_{2} \leq 4.5$. The global minimizer is at $(3,0.5) .{ }^{1}$

1. (20\%) Derive its gradient and Hessian, and use them in the following codes.
2. (80%) Implement the following methods with proper line search algorithms, and compare and discuss their convergence behaviors. Using initial guess $(1,1)$ and tolerance 10^{-6}.
(a) Steepest descent method,
(b) Newton's method,
(c) Quasi-Newton method (SR1 or BFGS),
(d) Conjugate gradient method (CG).
[^0]
[^0]: ${ }^{1}$ http://www.math.ntu.edu.tw/~wwang/cola_lab/test_problems/multiple_opt/ multiopt_prob/Beale $\backslash \% 20$ Function/Beale $\backslash \% 20$ Function.htm

