CS5321 Numerical Optimization Homework 3

Line Search and Multi-dimensional Problems

Due April 5, 2012

1. (40\%) Recall the Wolfe conditions for step length α

- Sufficient decrease cond: $f\left(x_{k}+\alpha p_{k}\right) \leq f\left(x_{k}\right)+c_{1} \alpha f^{\prime}\left(x_{k}\right) p_{k}$,
- Curvature condition: $f^{\prime}\left(x_{k}+\alpha p_{k}\right) p_{k} \geq c_{2} f^{\prime}\left(x_{k}\right) p_{k}$,
for $0<c_{1}<c_{2}<1$ and $p_{k}= \pm 1$. Suppose function f is Lipschitz continuous, which means

$$
\left|f^{\prime}(x)-f^{\prime}(y)\right| \leq L|x-y| \text { for all } x, y \text { and } L>0
$$

Prove the following results.
(a) The curvature condition implies $\alpha \geq \frac{\left(c_{2}-1\right) f^{\prime}\left(x_{k}\right) p_{k}}{L}>0$. In other word, the curvature condition enforces α not too small.
(b) Let $x_{k+1}=x_{k}+\alpha_{k} p_{k}$. The sufficient decrease condition, with the result of (a), implies

$$
f\left(x_{k}\right)-f\left(x_{k+1}\right) \geq \frac{c_{1}\left(1-c_{2}\right)}{L}\left|f^{\prime}\left(x_{k}\right)\right|^{2}>0 .
$$

This means the sufficient decrease condition ensures the sufficient decrease of function value.
(c) Suppose f is bounded below, which means $f\left(x_{0}\right)-f\left(x_{k}\right)$ is smaller than some positive constant for all k. Show

$$
\sum_{k=0}^{\infty}\left|f^{\prime}\left(x_{k}\right)\right|^{2}<\infty .
$$

2. (60%) Let $f(x, y)=\frac{1}{2}(x-1)^{2}+\frac{9}{2}(y-1)^{2}$. This is a positive definite quadratic with minimizer at $\left(x^{*}, y^{*}\right)=(1,1)$.
(a) Derive the gradient g and the Hessian H of f.
(b) Write Matlab codes to implement the steepest descent method and Newton's method with $\vec{x}_{0}=(9,0)$, and compare their convergent results. The formula of the steepest descent method is

$$
\vec{x}_{k+1}=\vec{x}_{k}-\frac{\vec{g}_{k}^{T} \vec{g}_{k}}{\vec{g}_{k}^{T} H_{k} \vec{g}_{k}} \vec{g}_{k},
$$

and the formula of Newton's method is

$$
\vec{x}_{k+1}=\vec{x}_{k}-H_{k}^{-1} \vec{g}_{k},
$$

where $\vec{g}_{k}=g\left(\vec{x}_{k}\right)$ and $H_{k}=H\left(\vec{x}_{k}\right)$.
*** In Matlab, use $\mathrm{x}=\mathrm{A} \backslash \mathrm{b}$ to compute $x=A^{-1} b$.
(c) Draw the trace of $\left\{\vec{x}_{k}\right\}$ for the steepest descent method and Newton's method. An example code for trace drawing is given as follows.

```
function draw_trace()
    % draw the contour of the function z = ((x-1)^2+9* (y-1)^2)/2;
    step = 0.1;
    X = 0:step:9;
    Y = -1:step:1;
    n = size(X,2);
    m = size(Y,2);
    Z = zeros(m,n);
    for i = 1:n
        for j = 1:m
            Z(j,i) = f(X(i),Y(j));
        end
    end
    contour(X,Y,Z,100)
    % function definition
        function z = f(x,y)
            z = 1/2*(x-1)^2+9/2*(y-1)^2;
        end
    end
```

