CS5321 Numerical Optimization Homework 2

One dimensional problems

Due March 19, 2012

1. (40%) A function f is called convex if

$$
f\left(\alpha x_{1}+(1-\alpha) x_{2}\right) \leq \alpha f\left(x_{1}\right)+(1-\alpha) f\left(x_{2}\right)
$$

for any x_{1}, x_{2} in the interval of interests, and $\alpha \in[0,1]$.
(a) Prove that for a convex function, any local minimizer is a global minimizer.
(b) Prove that any stationary point of a convex function is a minimizer.
(c) Prove that a twice differentiable function is convex on an interval if and only if its second derivative is non-negative everywhere.
Hint: For the if part: use Taylor theorem (with reminder) and the mean value theorem of derivative, which is for a differentiable function f and $x>z>y$,

$$
f^{\prime}(z)=\frac{f(x)-f(y)}{x-y} .
$$

For the only if part: use this definition of second derivative

$$
f^{\prime \prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-2 f(x)+f(x-h)}{h^{2}} .
$$

2. For $x \in[0,1], f(x)=x^{2} \sin \left(\frac{8}{x}\right), f(0)=0$.
(a) (20\%) Compute f^{\prime} and $f^{\prime \prime}$. (Submit this part on $3 / 8$ in class to make sure everyone has the right formula to continue.)
(b) (40\%) Implement a Matlab code to find one of its local minimizer by line search method using $x_{0}=0.6,0.3$, and 0.1 . Describe the algorithm you used to compute the search directions and step lengths.

Figure 1: $f(x)=x^{2} \sin \left(\frac{8}{x}\right), f(0)=0$

