
2011 CS5321 Numerical Optimization Midterm

May 16, 15:20-17:20

There are 10 questions with total 110 points. If you think any
question is unclear or has ambiguity, write down your

assumptions for it, and based on your assumption to answer it.

1. (10) Your cheat sheet

2. (10) Briefly answer the following questions.

(a) What is symmetric positive definite (SPD)? why it is important
in numerical optimization.

(b) Name two algorithms that can only work for SPD Hessian matrix
or reduced Hessian matrix.

3. (10) For a quadratic unconstrained optimization problem,

min
x⃗

f(x⃗) =
1

2
x⃗TQx⃗− b⃗T x⃗,

if Q is symmetric positive definite, at x⃗k, given a search direction p⃗k,
the optimal step length is

®k = − p⃗Tk∇f(x⃗k)

p⃗TkQp⃗k
.

Show the optimal step length you derived satisfies the Goldstein con-
ditions:

f(x⃗k) + (1− c)®k∇p⃗Tk f(x⃗k) ≤ f(x⃗k + ®kp⃗k) ≤ f(x⃗k) + c®kp⃗
T
k∇f(x⃗k),

for 0 < c < 1/2.

f(x⃗k + ®kp⃗k) =
1

2
(x⃗k + ®kp⃗k)

TQ(x⃗k + ®kp⃗k)− b⃗T (x⃗k + ®kp⃗k)

=

[
1

2
x⃗T
kQx⃗k − b⃗T x⃗k

]
+

1

2
®2
kp⃗

T
kQp⃗k + ®kp⃗

T
k (Qx⃗kb⃗)
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The term Qx⃗kb⃗ = ∇f(x⃗k), and f(x⃗k) = 1
2
x⃗T
kQx⃗k − b⃗T x⃗k. Using the

definition of ®k and above relations, we have

f(x⃗k + ®kp⃗k) = f(x⃗k) +
1

2
®kp⃗

T
k∇f(x⃗k)

which satisfies the Goldenstein conditions for 0 < c < 1/2.

4. (10) Let Bk be the BFGS approximation to the Hessian Hk matrix.
The formula of updating Bk is

Bk+1 = Bk − Bky⃗ky⃗
T
k Bk

y⃗Tk Bky⃗k
+

s⃗ks⃗
T
k

y⃗Tk s⃗k
, (1)

where s⃗k = x⃗k+1 − x⃗k, y⃗k = ∇fk+1 −∇fk. Show that if s⃗Tk y⃗k > 0 and
Bk is SPD, Bk+1 obtained by (1) is SPD. (Hint: (1) you need to prove
Bk+1 is symmetric first, (2) use the secant equation.)

BT
k+1 = Bk − Bky⃗ky⃗

T
k Bk

y⃗Tk Bky⃗k
+

s⃗ks⃗
T
k

y⃗Tk s⃗k
= Bk+1, so it is symmetric.

x⃗TBk+1x⃗ = x⃗TBkx⃗− x⃗TBky⃗ky⃗
T
k Bkx⃗

y⃗Tk Bky⃗k
+

x⃗T s⃗ks⃗
T
k x⃗

y⃗Tk s⃗k

=
x⃗TBkx⃗y⃗

T
k Bky⃗k − x⃗TBky⃗ky⃗

T
k Bkx⃗

y⃗Tk Bky⃗k
+

x⃗T s⃗ks⃗
T
k x⃗

y⃗Tk s⃗k

I could not find a simple way to prove the SPD part by the hints I gave,
so the point of this question is given for grace.

An easier way to prove it is to show B−1
k+1 is SPD, which is left for

exercise.

5. (10) Consider the linear least square problem:

min
x⃗∈ℝ2

∥Ax⃗− b⃗∥2,

where

A =

⎛
⎝

4 8
2 4
1 2

⎞
⎠ , b⃗ =

⎛
⎝

21/4
0
0

⎞
⎠

(a) Write its normal equation.

ATAx⃗ = AT b⃗ ⇒
(

21 42
42 84

)
x⃗ =

(
21
42

)
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(b) Express b⃗ = b⃗1+ b⃗2 such that b⃗1 is in the subspace spanned by A’s

column vectors, and b⃗2 is orthogonal to A’s column vectors.

b⃗1 =

⎛
⎝

4
2
1

⎞
⎠ , b⃗2 =

⎛
⎝

5/4
−2
−1

⎞
⎠

6. (10) Consider the linear programming problem:

minx⃗ −400x1 + 600x2 − 100x3 − 950x4

s.t. 2x1 + x2 + x3 + x5 + 3x6 = 8
x1 + x2 − x3 + x4 + 4x6 = 5
x1, x2, x3, x4, x5, x6 ≥ 0

Suppose the current x⃗ = (0, 0, 0, 0, 17/4, 5/4) and the simplex method
wants to increase x4.

(a) What is the search direction?

p⃗T = (0, 0, 0, 1, 3/4,−1/4)

(b) What is the step length?

® = 5

7. (10) Solve the problem

min
x⃗∈ℝn

c⃗T x⃗

s.t. x⃗T e⃗ = x1 + x2 + ⋅ ⋅ ⋅+ xn = 0
x⃗T x⃗ = 1

Partial credit will be given if only the case of n = 2 or n = 3 is
considered.

ℒ = c⃗T x⃗− ¸1(x⃗
T e⃗)− ¸2(x⃗

T x⃗− 1)

Use the first order condition,

∇xℒ = c⃗− ¸1e⃗− ¸2x⃗ = 0.

So,

x⃗ =
1

¸2

(c⃗− ¸1e⃗).

Also, x⃗T e⃗ = 0 implies c⃗T e⃗ − ¸1e⃗
T e⃗ = 0, which concludes ¸1 = c⃗T e⃗/n

where n is the dimension.
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Using x⃗T x⃗ = 1, we have

1

¸2
2

(c⃗− ¸1e⃗)
T (c⃗− ¸1e⃗) = 1.

Thus, ¸2 = ∥c⃗− ¸1e⃗∥.

x⃗ =
c⃗− c⃗T e⃗/ne⃗

∥c⃗− c⃗T e⃗/ne⃗∥

8. (10) Consider the quadratic programming problem

min
x⃗

1
2
x⃗TGx⃗+ c⃗T x⃗

s.t. Ax⃗ ≥ b⃗

where G is symmetric positive definite. What is its dual problem?
Express it in the following form

max
̧⃗

q(̧⃗ )

s.t. ̧⃗ ≥ 0
(2)

Partial credit will be given if the objective function q contains variable
x⃗. (Hint: use Wolfe’s duality.)

ℒ(x⃗, ̧⃗ ) = 1

2
x⃗TGx⃗+ c⃗T x⃗− ̧⃗T (Ax⃗− b⃗)

Wolfe’s duality says

∇xℒ(x⃗, ̧⃗ ) = Gx⃗+ c⃗− AT ̧⃗ = 0

x⃗ = G−1(AT ̧⃗ − c⃗).

Plugging that into the Lagrangian function,

ℒ(x⃗, ̧⃗ ) =
1

2
(AT ̧⃗ − c⃗)TG−1GG−1(AT ̧⃗ − c⃗) + (c⃗T − ̧⃗TA)G−1(AT ̧⃗ − c⃗) + ̧⃗T b⃗

=
−1

2
(AT ̧⃗ − c⃗)TG−1(AT ̧⃗ − c⃗) + ̧⃗T b⃗

So the dual problem is

max
̧⃗

−1
2
(AT ̧⃗ − c⃗)TG−1(AT ̧⃗ − c⃗) + ̧⃗T b⃗

s.t. ̧⃗ ≥ 0
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9. (10) Suppose the sequential quadratic programming method is used,
and the formula of local QP model is given as follows:

min
p⃗

1
2
p⃗T∇2

xxℒkp⃗+∇fT
k p⃗

s.t. ∇cTk p⃗+ ck = 0

Consider the problem

min
x1,x2

2(x2
1 + x2

2 − 1)− x1

s.t. x2
1 + x2

2 − 1 = 0
(3)

What is the local quadratic programming model for (3) at (cos(µ), sin(µ))T ?

Just use the formula: First, we have

ℒ = 2(x2
1 + x2

2 − 1)− x1 − ¸(x2
1 + x2

2 − 1)

∇xℒ =

(
4x1 − 1− 2¸x1

4x2 − 2¸x2

)
=

(
(4− 2¸) cos(µ)− 1
(4− 2¸) sin(µ)

)
,

∇xxℒ =

(
4− 2¸ 0

0 4− 2¸

)
,∇f(x⃗k) =

(
4 cos(µ)− 1
4 sin(µ)

)

∇xc =

(
2x1

2x2

)
=

(
2 cos(µ)
2 sin(µ)

)
, c(x⃗k) = 0.

Therefore, the model problem is

min
p1,p2,¸

(2− ¸)p21 + (2− ¸)p22 + 4 cos(µ)p1 + 4 sin(µ)p2 − p1

s.t. 2 cos(µ)p1 + 2 sin(µ)p2 = 0

or
min
p1,p2,¸

(2− ¸)p21 + (2− ¸)p22 − p1

s.t. cos(µ)p1 + sin(µ)p2 = 0

10. (20) To your best knowledge, find at least one method for each gray
block.
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