CS5321 Numerical Optimization Homework 5

Due May 9

1. (30%) Use the optimality conditions of constrained optimization problems to verify the following properties.
(a) The optimal solution of the total least square problem is $A^{T} A \vec{x}=\lambda \vec{x}$ for some λ.
The total least square problem is

$$
\begin{array}{cl}
\min _{\vec{x}} & \vec{x}^{T} A^{T} A \vec{x} \\
\text { s.t. } & \vec{x}^{T} \vec{x}=1
\end{array}
$$

The Lagrangian function is

$$
\mathcal{L}=\vec{x}^{T} A^{T} A \vec{x}-\lambda\left(\vec{x}^{T} \vec{x}-1\right) .
$$

The KKT condition shows

$$
\nabla_{x} \mathcal{L}=2 A^{T} A \vec{x}-2 \lambda \vec{x}=0
$$

(b) For the trust region method, the optimal solution \vec{p}^{*} of the local model

$$
\min _{\vec{p} \in \mathbb{R}^{n}} m(\vec{p})=\vec{g}^{T} \vec{p}+\frac{1}{2} \vec{p}^{T} A \vec{p} \text { s.t. } \vec{p}^{T} \vec{p} \leq \Delta^{2}
$$

satisfies
$(A+\lambda I) \vec{p}^{*}=-\vec{g}, \quad \lambda\left(\Delta-\left\|\vec{p}^{*}\right\|\right)=0$, and $(A+\lambda I)$ is positive semi-definite.
The Lagrangian function for the trust region method is

$$
\mathcal{L}=\vec{g}^{T} \vec{p}+\frac{1}{2} \vec{p}^{T} A \vec{p}-\mu\left(\Delta^{2}-\vec{p}^{T} \vec{p}\right) .
$$

The KKT condition shows

$$
\nabla_{x} \mathcal{L}=\vec{g}+A \vec{p}+2 \mu \vec{p}=0 .
$$

Let $\lambda=2 \mu$.

$$
(A+\lambda I) \vec{p}^{*}=-\vec{g} .
$$

The complementarity condition shows

$$
\lambda\left(\Delta^{2}-\left\|\vec{p}^{*}\right\|^{2}\right)=0
$$

Either $\lambda=0$ or $\Delta^{2}=\left\|\vec{p}^{*}\right\|^{2}$, one can show that $\lambda\left(\Delta-\left\|\vec{p}^{*}\right\|\right)=0$.
If $\lambda=0$, the constrain is inactive, $\left\|\vec{p}^{*}\right\|<\Delta$. It is an unconstrained optimization problem. So by the second order condition of an unconstrained optimization problem, $B+\lambda I=B$ is positive semi-definite.
If $\lambda>0$, by the complementarity condition, $\left\|\vec{p}^{*}\right\|=\Delta$. Thus, we only need to consider the position \vec{p} such that $\|\vec{p}\|=\Delta$ (critical cone).
Since \vec{p}^{*} is the minimizer, $m\left(\vec{p}^{*}\right) \leq m(\vec{p})$, which implies

$$
\begin{equation*}
\vec{g}^{T} \vec{p}^{*}+\frac{1}{2}\left(\vec{p}^{*}\right)^{T} A \vec{p}^{*} \leq \vec{g}^{T} \vec{p}+\frac{1}{2} \vec{p}^{T} A \vec{p} \tag{1}
\end{equation*}
$$

We use the first condition: $\vec{g}=-(A+\lambda I) \vec{p}^{*}$ to obtain $\vec{g}^{T} \vec{p}^{*}=-\left(\vec{p}^{*}\right)^{T}(A+\lambda I) \vec{p}^{*}$ and $\vec{g}^{T} \vec{p}=-\vec{p}^{T}(A+\lambda I) \vec{p}^{*}$. Substituting them to (1), one has

$$
-\left(\vec{p}^{*}\right)^{T}(A+\lambda I) \vec{p}^{*}+\frac{1}{2}\left(\vec{p}^{*}\right)^{T} A \vec{p}^{*} \leq-\vec{p}^{T}(A+\lambda I) \vec{p}^{*}+\frac{1}{2} \vec{p}^{T} A \vec{p}
$$

Since $\left\|\vec{p}^{*}\right\|^{2}=\|\vec{p}\|^{2}=\Delta^{2}$, we add $\frac{1}{2} \lambda \Delta^{2}$ to both sides, and get

$$
-\left(\vec{p}^{*}\right)^{T}(A+\lambda I) \vec{p}^{*}+\frac{1}{2}\left(\vec{p}^{*}\right)^{T}(A+\lambda I) \vec{p}^{*} \leq-\vec{p}^{T}(A+\lambda I) \vec{p}^{*}+\frac{1}{2} \vec{p}^{T}(A+\lambda I) \vec{p}
$$

which is equivalent to

$$
0 \leq\left(\vec{p}^{*}-\vec{p}\right)^{T}(A+\lambda I)\left(\vec{p}^{*}-\vec{p}\right) .
$$

Since the only constraint of \vec{p} is $\|\vec{p}\|=\Delta,\left(\vec{p}^{*}-\vec{p}\right)$ can be any vector. Thus, $(A+\lambda I)$ is positive semi-definite.
2. (30\%) For a quadratic programming,

$$
\begin{gathered}
\min _{\vec{x}} g(\vec{x})=\frac{1}{2} \vec{x}^{T} G \vec{x}+\vec{x}^{T} \vec{c} \\
\text { s.t. } A \vec{x}=\vec{b}
\end{gathered}
$$

Prove that if A has full row-rank and the reduced Hessian $Z^{T} G Z$ is positive definite, where $\operatorname{span}\{Z\}$ is the null space of $\operatorname{span}\left\{A^{T}\right\}$, then the KKT matrix $K=\left[\begin{array}{cc}G & A^{T} \\ A & 0\end{array}\right]$ is nonsingular. (Hint: Prove that every vector $\left[\begin{array}{c}\vec{w} \\ \vec{v}\end{array}\right]$ making $\left[\begin{array}{cc}G & A^{T} \\ A & 0\end{array}\right]\left[\begin{array}{c}\vec{w} \\ \vec{v}\end{array}\right]=0$ is a zero vector. Using the property that $\vec{w}^{T} G \vec{w}>0$.)

Suppose $\left[\begin{array}{c}\vec{w} \\ \vec{v}\end{array}\right]$ making $\left[\begin{array}{cc}G & A^{T} \\ A & 0\end{array}\right]\left[\begin{array}{c}\vec{w} \\ \vec{v}\end{array}\right]=0$. which means

$$
\begin{align*}
G \vec{w}+A^{T} \vec{v} & =0 \tag{2}\\
A \vec{w} & =0 . \tag{3}
\end{align*}
$$

Pre-multiply \vec{w}^{T} to (2), one has $\vec{w}^{T} G \vec{w}+\vec{w}^{T} A^{T} \vec{v}=\vec{w}^{T} G \vec{w}+0^{T} \vec{v}=\vec{w}^{T} G \vec{w}=0$. Since $A \vec{w}=0, \vec{w}$ is in A 's null space. $\vec{w}=Z \vec{u}$.

$$
\vec{w}^{T} G \vec{w}=\vec{u}^{T} Z^{T} G Z \vec{u}=0
$$

and $Z^{T} G Z$ is positive definite implies $\vec{u}=0$, so is \vec{w}.
Since $\vec{w}=0$, from (2), $A^{T} \vec{v}=0$. But A is of full row rank. Therefore, \vec{v} must be a zero vector.

Thus, matrix K is nonsingular.
3. (40%) Consider the quadratic programming problem with bounded constraints

$$
\begin{gathered}
\min _{x_{1}, x_{2}, x_{3}}\left(x_{1}-4\right)^{2}+\left(x_{2}-3\right)^{2}+\left(x_{3}-2\right)^{2} \\
\text { s.t. } 0 \leq x_{1}, x_{2}, x_{3} \leq 2
\end{gathered}
$$

Use gradient projection method to find its optimal solution with $\vec{x}_{0}=0$. Write down the trace, like

$$
\vec{x}_{0}=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \rightarrow \vec{x}_{1}=\left(\begin{array}{c}
2 \\
3 / 2 \\
1
\end{array}\right) \rightarrow \vec{x}_{2}=\cdots
$$

