CS5321 Numerical Optimization Homework 5

Due May 9

1. (30\%) Use the optimality conditions of constrained optimization problems to verify the following properties.
(a) The optimal solution of the total least square problem is $A^{T} A \vec{x}=\lambda \vec{x}$ for some λ.
(b) For the trust region method, the optimal solution \vec{p}^{*} of the local model

$$
\min _{\vec{p} \in \mathbb{R}^{n}} m(\vec{p})=\vec{g}^{T} \vec{p}+\frac{1}{2} \vec{p}^{T} A \vec{p} \text { s.t. } \vec{p}^{T} \vec{p} \leq \Delta^{2}
$$

satisfies

$$
(A+\lambda I) \vec{p}^{*}=-\vec{g}, \quad \lambda\left(\Delta-\left\|\vec{p}^{*}\right\|\right)=0, \text { and }(A+\lambda I) \text { is positive definite. }
$$

2. (30%) For a quadratic programming,

$$
\begin{gathered}
\min _{\vec{x}} g(\vec{x})=\frac{1}{2} \vec{x}^{T} G \vec{x}+\vec{x}^{T} \vec{c} \\
\text { s.t. } A \vec{x}=\vec{b},
\end{gathered}
$$

Prove that if A has full row-rank and the reduced Hessian $Z^{T} G Z$ is positive definite, where $\operatorname{span}\{Z\}$ is the null space of $\operatorname{span}\left\{A^{T}\right\}$, then the KKT matrix $K=\left[\begin{array}{cc}G & A^{T} \\ A & 0\end{array}\right]$ is nonsingular. (Hint: Prove that every vector $\left[\begin{array}{c}\vec{w} \\ \vec{v}\end{array}\right]$ making $\left[\begin{array}{cc}G & A^{T} \\ A & 0\end{array}\right]\left[\begin{array}{c}\vec{w} \\ \vec{v}\end{array}\right]=0$ is a zero vector. Using the property that $\vec{w}^{T} G \vec{w}>0$.)
3. (40%) Consider the quadratic programming problem with bounded constraints

$$
\begin{gathered}
\min _{x_{1}, x_{2}, x_{3}}\left(x_{1}-4\right)^{2}+\left(x_{2}-3\right)^{2}+\left(x_{3}-2\right)^{2} \\
\text { s.t. } 0 \leq x_{1}, x_{2}, x_{3} \leq 2
\end{gathered}
$$

Use gradient projection method to find its optimal solution with $\vec{x}_{0}=0$. Write down the trace, like

$$
\vec{x}_{0}=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \rightarrow \vec{x}_{1}=\left(\begin{array}{c}
2 \\
3 / 2 \\
1
\end{array}\right) \rightarrow \vec{x}_{2}=\cdots
$$

