CS5321 Numerical Optimization Homework 4

Due April 25

1. (10%) What is the distance of a point \vec{p} to a hyperplane $\vec{a}^{T} \vec{x}+b=0$. Justify your answer.
Assume $\vec{a} \neq 0$. First, let's consider the case that $b=0$. In such case, we split the vector \vec{p} into two vectors: one parallel to the normal vector of the hyperplane \vec{a}, and another perpendicular to \vec{a},

$$
\vec{p}=\cos \angle(\vec{p}, \vec{a}) \vec{p}+\sin \angle(\vec{p}, \vec{a}) \vec{p} .
$$

The distance from \vec{p} to the hyperplane is $\|\cos \angle(\vec{p}, \vec{a}) \vec{p}\|=\left|\vec{a}^{T} \vec{p}\right| /\|\vec{a}\|$. For the case that $b \neq 0$ is just adding a shift to the distance. Therefore, it is

$$
\left|\vec{a}^{T} \vec{p}+b\right| /\|\vec{a}\|
$$

For the case $\vec{a}=0, b$ must be 0 too. In this case, the distance is the distance to the origin $\|\vec{p}\|$.
2. (40%) Our frequently used matrix norms are called subordinate matrix norm because they are derived from corresponding vector norms. For an $n \times m$ matrix A, its 1-norm, 2-norm and infinite-norm are defined by

$$
\|A\|_{p}=\max _{\|x\|_{p}=1}\|A x\|_{p}
$$

where $p=1,2, \infty$ respectively.
(a) What is the matrix 1-norm? Justify your answer?

Vector 1-norm of $\vec{x}=\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{T}$ is $\|\vec{x}\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|$.
Let $A=\left(\vec{a}_{1}, \overrightarrow{a_{2}}, \ldots, \vec{a}_{n}\right)$, where \vec{a}_{i} is the i th column vector of A.
Given an \vec{x},

$$
\begin{array}{rlrl}
A \vec{x} & =\sum_{i=1}^{n} x_{i} \vec{a}_{i} & \\
\|A \vec{x}\|_{1} & =\left\|\sum_{i=1}^{n} x_{i} \vec{a}_{i}\right\|_{1} & \\
& \leq \sum_{i=1}^{n}\left|x_{i}\right|\left\|\vec{a}_{i}\right\|_{1} & & \text { (Triangle inequality) } \\
& \leq\left(\max _{i=1, \ldots, n}\left\|\vec{a}_{i}\right\|_{1}\right) \sum_{i=1}^{n}\left|x_{i}\right| & \text { (Find a largest } \left.\left\|\vec{a}_{i}\right\|_{1}\right) \\
& =\left(\max _{i=1, \ldots, n}\left\|\vec{a}_{i}\right\|_{1}\right)\|\vec{x}\|_{1} &
\end{array}
$$

Therefore, $\|A\|_{1}=\max _{i=1, . ., n}\left\|\vec{a}_{i}\right\|_{1}$.
(b) What is the matrix ∞-norm? Justify your answer?

Vector ∞-norm of $\vec{x}=\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{T}$ is $\|\vec{x}\|_{\infty}=\max _{i=1, \ldots, n}\left|x_{i}\right|$.
Let $A=\left(\vec{a}_{1}^{T},{\overrightarrow{a_{2}}}^{T}, \ldots, \vec{a}_{m}^{T}\right)^{T}$, where \vec{a}_{i} is the i th row vector of A.

$$
A \vec{x}=\left(\begin{array}{c}
\vec{a}_{1}^{T} \vec{x} \\
\vec{a}_{2}^{T} \vec{x} \\
\vdots \\
\vec{a}_{m}^{T} \vec{x}
\end{array}\right)
$$

Given an \vec{x},

$$
\begin{aligned}
\|A \vec{x}\|_{\infty} & =\max _{i=1, \ldots, m}\left|\vec{a}_{i}^{T} \vec{x}\right| \\
& =\max _{i=1, ., m}\left|\sum_{j=1}^{n} a_{i, j} x_{j}\right| \\
& \leq \max _{i=1, \ldots, m} \sum_{j=1}^{n}\left|a_{i, j} x_{j}\right| \\
& \leq \max _{i=1, \ldots, m}\left(\sum_{j=1}^{n}\left|a_{i, j}\right|\right) \max _{j=1, \ldots, n}\left|x_{j}\right| \\
& =\max _{i=1, \ldots, m}\left\|\vec{a}_{i}\right\|_{1}\|\vec{x}\|_{\infty}
\end{aligned}
$$

Therefore, $\|A\|_{1}=\max _{i=1, . ., n}\left\|\vec{a}_{i}\right\|_{1}$.
(Note the meaning of \vec{a}_{i} here is different from that is 2(a).)
(c) What is the matrix 2-norm? Justify your answer?

Vector 2-norm of $\vec{x}=\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{T}$ is $\|\vec{x}\|_{\infty}=\sqrt{x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}}=$ $\sqrt{\vec{x}^{T} \vec{x}}$.
Let $A^{T} A=Q \Lambda Q^{-1}$ be the eigenvalue decomposition of $A^{T} A$, where Λ is diagonal with elements $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$.
Because $A^{T} A$ is symmetric, one can make Q orthogonal, $Q^{-1}=Q^{T}$. In addition, $A^{T} A$ is positive semidefinite, all λ_{i} are non-negative. Given an A and an \vec{x}, let $\vec{y}=Q^{T} \vec{x}$.

$$
\begin{aligned}
\|A \vec{x}\|_{2}^{2} & =\vec{x}^{T} A^{T} A \vec{x} \\
& =\vec{x}^{T} Q \Lambda Q^{T} \vec{x} \\
& =\vec{y}^{T} \Lambda \vec{y} \\
& =\sum_{i=1}^{n} \lambda_{i} y_{i}^{2} \\
& \leq\left(\max _{i=1, . . n} \lambda_{i}\right) \sum_{i=1}^{n} y_{i}^{2} \\
& \leq\left(\max _{i=1, . . n} \lambda_{i}\right)\|\vec{y}\|_{2}^{2}
\end{aligned}
$$

Because Q is orthogonal, $\|\vec{y}\|_{2}=\left\|Q^{T} \vec{x}\right\|_{2}=\|\vec{x}\|_{2}$. Therefore, $\|A\|_{2}=$ the largest eigenvalue of $A^{T} A$, which is also the largest singular value of A.
(d) Show the condition number of an invertible matrix $A, \kappa(A)$, equations to σ_{1} / σ_{n}, where σ_{1} is the largest singular value of A and σ_{n} is the smallest singular value of A.

Here we use 2-norm to define the condition number of a invertible matrix $A: \kappa(A)=\|A\|_{2}\left\|A^{-1}\right\|_{2}$. Since A is invertible, all its singular values are nonzero. Also, if $\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{n} \geq 0$ are the singular values of A, $\sigma_{n}^{-1} \geq \sigma_{n-1}^{-1} \geq \ldots \geq \sigma_{1}^{-1} \geq 0$ are the singular values of A^{-1}. Therefore, $\kappa(A)=\sigma_{1} \sigma_{n}^{-1}$.
3. (50%) Consider the following linear program:

$$
\begin{array}{ll}
\max _{x_{1}, x_{2}} & z=8 x_{1}+5 x_{2} \\
\text { s.t. } & 2 x_{1}+x_{2} \leq 1000 \\
& 3 x_{1}+4 x_{2} \leq 2400 \\
& x_{1}+x_{2} \leq 700 \\
& x_{1}-x_{2} \leq 350 \\
& x_{1}, x_{2} \geq 0
\end{array}
$$

(a) Transform it the standard form.
(b) Suppose the initial guess is $(0,0)$. Use the simplex method to solve this problem. In each iterations, show

- Basic variables and non-basic variables, and their values.
- Pricing vector.
- Search direction.
- Ratio test result.

