CS5321 Numerical Optimization Homework 4

Due April 25

1. (10%) What is the distance of a point \vec{p} to a hyperplane $\vec{a}^T \vec{x} + b = 0$. Justify your answer.

Assume $\vec{a} \neq 0$. First, let's consider the case that b = 0. In such case, we split the vector \vec{p} into two vectors: one parallel to the normal vector of the hyperplane \vec{a} , and another perpendicular to \vec{a} ,

$$\vec{p} = \cos \angle (\vec{p}, \vec{a})\vec{p} + \sin \angle (\vec{p}, \vec{a})\vec{p}.$$

The distance from \vec{p} to the hyperplane is $\|\cos \angle(\vec{p}, \vec{a})\vec{p}\| = |\vec{a}^T\vec{p}|/\|\vec{a}\|$. For the case that $b \neq 0$ is just adding a shift to the distance. Therefore, it is

$$|\vec{a}^T \vec{p} + b| / \|\vec{a}\|.$$

For the case $\vec{a} = 0$, b must be 0 too. In this case, the distance is the distance to the origin $\|\vec{p}\|$.

2. (40%) Our frequently used matrix norms are called *subordinate matrix norm* because they are derived from corresponding vector norms. For an $n \times m$ matrix A, its 1-norm, 2-norm and infinite-norm are defined by

$$||A||_p = \max_{||x||_p = 1} ||Ax||_p,$$

where $p = 1, 2, \infty$ respectively.

(a) What is the matrix 1-norm? Justify your answer?

Vector 1-norm of $\vec{x} = [x_1, x_2, \dots, x_n]^T$ is $\|\vec{x}\|_1 = \sum_{i=1}^n |x_i|$.

Let $A = (\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n)$, where \vec{a}_i is the *i*th column vector of A. Given an \vec{x} ,

$$\begin{array}{rcl}
A\vec{x} &=& \sum_{i=1}^{n} x_{i}\vec{a}_{i} \\
\|A\vec{x}\|_{1} &=& \|\sum_{i=1}^{n} x_{i}\vec{a}_{i}\|_{1} \\
&\leq& \sum_{i=1}^{n} |x_{i}|\|\vec{a}_{i}\|_{1} & (\text{Triangle inequality}) \\
&\leq& (\max_{i=1,\dots,n} \|\vec{a}_{i}\|_{1})\sum_{i=1}^{n} |x_{i}| & (\text{Find a largest } \|\vec{a}_{i}\|_{1}) \\
&=& (\max_{i=1,\dots,n} \|\vec{a}_{i}\|_{1}) \|\vec{x}\|_{1}
\end{array}$$

Therefore, $||A||_1 = \max_{i=1,..,n} ||\vec{a}_i||_1$.

(b) What is the matrix ∞ -norm? Justify your answer? Vector ∞ -norm of $\vec{x} = [x_1, x_2, \dots, x_n]^T$ is $\|\vec{x}\|_{\infty} = \max_{i=1,\dots,n} |x_i|$. Let $A = (\vec{a}_1^T, \vec{a}_2^T, \dots, \vec{a}_m^T)^T$, where \vec{a}_i is the *i*th row vector of A.

$$A\vec{x} = \begin{pmatrix} \vec{a}_1^T \vec{x} \\ \vec{a}_2^T \vec{x} \\ \vdots \\ \vec{a}_m^T \vec{x} \end{pmatrix}$$

Given an \vec{x} ,

$$\begin{aligned} A\vec{x}\|_{\infty} &= \max_{i=1,..,m} |\vec{a}_{i}^{T}\vec{x}| \\ &= \max_{i=1,..,m} \left| \sum_{j=1}^{n} a_{i,j} x_{j} \right| \\ &\leq \max_{i=1,..,m} \sum_{j=1}^{n} |a_{i,j} x_{j}| \\ &\leq \max_{i=1,..,m} \left(\sum_{j=1}^{n} |a_{i,j}| \right) \max_{j=1,..,n} |x_{j}| \\ &= \max_{i=1,..,m} \|\vec{a}_{i}\|_{1} \|\vec{x}\|_{\infty} \end{aligned}$$

Therefore, $||A||_1 = \max_{i=1,..,n} ||\vec{a}_i||_1$. (Note the meaning of \vec{a}_i here is different from that is 2(a).)

(c) What is the matrix 2-norm? Justify your answer?

Vector 2-norm of $\vec{x} = [x_1, x_2, \dots, x_n]^T$ is $\|\vec{x}\|_{\infty} = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2} = \sqrt{\vec{x}^T \vec{x}}.$

Let $A^T A = Q \Lambda Q^{-1}$ be the eigenvalue decomposition of $A^T A$, where Λ is diagonal with elements $\lambda_1, \lambda_2, \ldots, \lambda_n$.

Because $A^T A$ is symmetric, one can make Q orthogonal, $Q^{-1} = Q^T$. In addition, $A^T A$ is positive semidefinite, all λ_i are non-negative. Given an A and an \vec{x} , let $\vec{y} = Q^T \vec{x}$.

$$\begin{split} \|A\vec{x}\|_{2}^{2} &= \vec{x}^{T}A^{T}A\vec{x} \\ &= \vec{x}^{T}Q\Lambda Q^{T}\vec{x} \\ &= \vec{y}^{T}\Lambda\vec{y} \\ &= \sum_{i=1}^{n}\lambda_{i}y_{i}^{2} \\ &\leq \left(\max_{i=1,..n}\lambda_{i}\right)\sum_{i=1}^{n}y_{i}^{2} \\ &\leq \left(\max_{i=1,..n}\lambda_{i}\right)\|\vec{y}\|_{2}^{2} \end{split}$$

Because Q is orthogonal, $\|\vec{y}\|_2 = \|Q^T \vec{x}\|_2 = \|\vec{x}\|_2$. Therefore, $\|A\|_2 =$ the largest eigenvalue of $A^T A$, which is also the largest singular value of A.

(d) Show the condition number of an invertible matrix A, $\kappa(A)$, equations to σ_1/σ_n , where σ_1 is the largest singular value of A and σ_n is the smallest singular value of A.

Here we use 2-norm to define the condition number of a invertible matrix A: $\kappa(A) = ||A||_2 ||A^{-1}||_2$. Since A is invertible, all its singular values are nonzero. Also, if $\sigma_1 \ge \sigma_2 \ge \ldots \ge \sigma_n \ge 0$ are the singular values of A, $\sigma_n^{-1} \ge \sigma_{n-1}^{-1} \ge \ldots \ge \sigma_1^{-1} \ge 0$ are the singular values of A^{-1} . Therefore, $\kappa(A) = \sigma_1 \sigma_n^{-1}$.

3. (50%) Consider the following linear program:

$$\max_{x_1, x_2} \quad z = 8x_1 + 5x_2 \\ \text{s.t.} \quad 2x_1 + x_2 \le 1000 \\ 3x_1 + 4x_2 \le 2400 \\ x_1 + x_2 \le 700 \\ x_1 - x_2 \le 350 \\ x_1, x_2 \ge 0$$

- (a) Transform it the standard form.
- (b) Suppose the initial guess is (0,0). Use the simplex method to solve this problem. In each iterations, show
 - Basic variables and non-basic variables, and their values.
 - Pricing vector.
 - Search direction.
 - Ratio test result.