CS5321 Numerical Optimization Homework 2

Due March 24

1. (20%) A set \mathcal{S} convex if the straight line connecting any two points in \mathcal{S} is entirely in \mathcal{S}. A function is called convex if its domain \mathcal{S} is convex, and for any $\vec{x}, \vec{y} \in \mathcal{S}$,

$$
f(\alpha \vec{x}+(1-\alpha) \vec{y}) \leq \alpha f(\vec{x})+(1-\alpha) f(\vec{y})
$$

for all $\alpha \in[0,1]$.
(a) Prove that when f is convex, any local minimizer \vec{x}^{*} is a global minimizer of f. (Hint: Suppose there is another point $\vec{z} \in \mathcal{S}$ such that $f(\vec{z}) \leq f\left(\vec{x}^{*}\right)$. Then \vec{x}^{*} is not a local minimizer.)
(b) Suppose $f(\vec{x})=\vec{x}^{T} Q \vec{x}$, where Q is a symmetric positive semidefinite matrix. Show that $f(\vec{x})$ is convex. (Hint: It might be easier to show $f(\vec{y}+\alpha(\vec{x}-\vec{y}))-$ $\alpha f(\vec{x})-(1-\alpha) f(\vec{y}) \leq 0$.
(a) Suppose \vec{x}^{*} is the local but not a global minimizer. We can find \vec{z} such that $f(\vec{z})<f\left(\vec{x}^{*}\right)$. Consider the line segment of \vec{x}^{*} and \vec{z},

$$
\vec{x}=\mu \vec{z}+(1-\mu) \vec{x}^{*}
$$

for some $\mu \in(0,1]$. Since f is convex,

$$
f(\vec{x}) \leq \mu f(\vec{z})+(1-\mu) f\left(\vec{x}^{*}\right)<f\left(\vec{x}^{*}\right)
$$

for any μ, which violates the assumption that \vec{x}^{*} is the local minimizer.
(b)

$$
\begin{align*}
f(\vec{y}+\alpha(\vec{x}-\vec{y})) & =\alpha^{2} \vec{x}^{T} Q \vec{x}+(1-\alpha)^{2} \vec{y}^{T} Q \vec{y}+2 \alpha(1-\alpha) \vec{x}^{T} Q \vec{y} \tag{1}\\
\alpha f(\vec{x})-(1-\alpha) f(\vec{y}) & =\alpha^{2} \vec{x}^{T} Q \vec{x}+(1-\alpha)^{2} \vec{y}^{T} Q \vec{y}+\alpha(1-\alpha)\left(\vec{x}^{T} Q \vec{x}+\vec{y}^{T} Q \vec{y}\right) \tag{2}
\end{align*}
$$

(1) $-(2) \Rightarrow-\alpha(1-\alpha)(\vec{x}-\vec{y})^{T} Q(\vec{x}-\vec{y}) \leq 0$. (because Q is symmetric positive semi-definite.) Therefore, $f(\vec{x})$ is convex.
2. (30\%) For a given function $f(x): \mathbb{R} \rightarrow \mathbb{R}$,
(a) What is the quadratic polynomial $p(x)$ satisfying $p(0)=f(0), p(1)=f(1)$, and $p^{\prime}(0)=f^{\prime}(0)$? Express $p(x)$ by $f(0), f(1)$, and $f^{\prime}(0)$.
Suppose $p(x)=a x^{2}+b x+c . p^{\prime}(x)=2 a x+b$. For given conditions,

$$
\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 1 & 1 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{c}
f(0) \\
f(1) \\
f^{\prime}(0)
\end{array}\right)
$$

Thus, $c=f(0), b=f^{\prime}(0)$, and $a=f(1)-f(0)-f^{\prime}(0)$.
(b) What is the minimizer of $p(x)$ for $x \in[0,1]$? You may need to discuss different cases for different $f(0), f(1)$, and $f^{\prime}(0)$.
Let $z=\frac{f^{\prime}(0)}{2\left(f(1)-f^{\prime}(0)-f(0)\right)}$.

$$
x^{*}= \begin{cases}0, & f^{\prime}(0) \geq 0 \text { and } f(0) \leq f(1) ; \\ z, & f^{\prime}(0)<0 \text { and } z \in(0,1) ; \\ 1, & \text { Otherwise }\end{cases}
$$

(c) What is the cubic polynomial $q(x)$ satisfying $q(0)=f(0), q\left(\alpha_{1}\right)=f\left(\alpha_{1}\right), q\left(\alpha_{2}\right)=$ $f\left(\alpha_{2}\right)$, and $q^{\prime}(0)=f^{\prime}(0)$? Express $q(x)$ by $f(0), f\left(\alpha_{1}\right), f\left(\alpha_{2}\right)$, and $f^{\prime}(0)$.
Suppose $p(x)=a x^{3}+b x^{2}+c x+d . p^{\prime}(x)=3 a x^{2}+b x+c$. For given conditions,

$$
\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
\alpha_{1}^{3} & \alpha_{1}^{2} & \alpha_{1} & 1 \\
\alpha_{2}^{3} & \alpha_{2}^{2} & \alpha_{2} & 1
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right)=\left(\begin{array}{c}
f(0) \\
f^{\prime}(0) \\
f\left(\alpha_{1}\right) \\
f\left(\alpha_{2}\right)
\end{array}\right) .
$$

Solve that for a, b, c, d.
3. (50%) Let $f_{1}(x, y)=\frac{1}{2} x^{2}+\frac{9}{2} y^{2}$ and $f_{2}(x, y)=\frac{1}{2} x^{2}+y^{2}$.
(a) Derive the gradient g and the Hessian H of f_{1} and f_{2}, and compute H s' eigenvalues.
(b) Write Matlab codes to implement the steepest descent method and Newton's method with $\vec{x}_{0}=(9,1)$, and compare their convergent results. The formula of the steepest descent method is

$$
\vec{x}_{k+1}=\vec{x}_{k}-\frac{\vec{g}_{k}^{T} \vec{g}_{k}}{\vec{g}_{k}^{T} H_{k} \vec{g}_{k}} \vec{g}_{k},
$$

and the formula of Newton's method is

$$
\vec{x}_{k+1}=\vec{x}_{k}-H_{k}^{-1} \vec{g}_{k},
$$

where $\vec{g}_{k}=g\left(\vec{x}_{k}\right)$ and $H_{k}=H\left(\vec{x}_{k}\right)$.

