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Penalty method

@ The idea is to add penalty terms to the objective function, which
turns a constrained optimization problem to an unconstrained one.

Quadratic penalty function
Example (For equality constraints)
min x1 + x2 subject to xZ + x5 —2 =10
= Define Q(X, 1)
For u =1,

(x*=(1,1))

:X1+X2+g(X12+X22—2)2

oy (14203 +x3-2)x¢ \ _ [ O 5\ _ [ -11
VQ(X’l)_<1—1—2(X12—|—X22—2)X2 SN0 o\ ) —-11

For u = 10,

a1 4200E+x2-2)x [ O X\ _ ( —1.0000001
VQ(X’lo)_<1—|—20(x12+x22—2)x2 ~\0 /"% ) \ —1.0000001

v
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o It seems the larger u, the better solution is.

@ When p is large, matrix V2Q ~ uVcVe' is ill-conditioned.
L
QUx. 1) = F(x) + 5 (c(x))?

V@ =Vf+pucVce
V2Q = V?f + uVeVe + ucVae

@ 1 cannot be too small either.

min —5x +x3 st xg = 1.
X

Q1) = =5x¢ +4 + £ 0 — 12

For u < 10, the problem min Q(X, ) is unbounded.
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Quadratic penalty function

@ Picks a proper initial guess of 1 and gradually increases it.

Algorithm: Quadratic penalty function
@ Given pp > 0 and X

Q@ For k=0,1,2,...
@ Solve min Q(:, i) = (%) + % Y (R).

icE
@ |If converged, stop

@ Increase pk+1 > pk and find a new xp 1

@ Problem: the solution is not exact for y < oc.
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Augmented Lagrangian method

@ Use the Lagrangian function to rescue the inexactness problem.

o Let M
L(%, 7,1 )= D _pic(R) + 5 > ()
i€e i€e
VL =VIf(X Z piVeci(X) + MZ ¢i(X)Ve;.
i€e ice

By the Lagrangian theory, VL = Vf — 3 .__(pi — puc;) V.
A*

i

-1
At the optimal solution, ¢;(X*) = — (A7 — pi).
W

If we can approximate p; — A7, ik need not be increased

indefinitely,
AL = N — peci(xx)

Algorithm: update p; at each iteration.
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Inequality constraints

There are two approaches to handle inequality constraints.
© Make the object function nonsmooth (non-differentiable at some
points).
@ Add slack variable to turn the inequality constraints to equality

constraints.
C,'()?) — 5 = 0

Ci20:>{5i20

o But then we have bounded constraints for slack variables.

We will focus on the second approach here.

May 1, 2011
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Inequality constraints

@ Suppose the augmented Lagrangian method is used and all inequality
constraints are converted to bounded constraints.
@ For a fixed p and A,

min  L(X, X, 1 Z Aici(X) + % Zl

X

s.t. ng_

@ The first order necessary condition for X to be a solution of the above

problem is
X =P(X—VxLa(X,\, ), ¢, 0),
where
4, it g <
P(g,t,d) =< g, ifgi€,u), forali=12 ... n.
uj, if g > u;.
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Nonlinear gradient projection method

Sequential quadratic programming + trust region method to solve

ming f(X) st. (<X<i

Algorithm: Nonlinear gradient projection method

© At each iteration, build a quadratic model
. 1
q(X) = §(X — x) " Bi(x — xi) + VAT (x — xi)

where By is SPD approximation of V2f(x).

@ For some Ay, use the gradient projection method to solve

min  q(%)
X

st max(l, % — Ag) < X < max(@, % + Dg),

© Update Ay and repeat 1-3 until converge.
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Interior point method

@ Consider the problem

ming  f(X)

s.t CE(;)IO
G(X)—s5=0
§>0

where 5 are slack variables.

@ The interior point method starts a point inside the feasible region,
and builds “walls” on the boundary of the feasible region.

@ A barrier function goes to infinity when the input is close to zero.

m|n f(X ,uz log(s;) s.t. 85(%)_:5.0: 0 (1)

o The function f(x) = —logx — oo as x — 0.
e 4 barrier parameter
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An example

Example (min —x + 1, s.t. x <1)

\y“ 1-x>0

ming —x + 1 — pIn(1 — x)

w=1 x* = 0.00005
pw=0.1 x* =0.89999
© =001, x* =0.989999 X
p=10"5 x* =0.99993
@ The Lagrangian of (1) is
ﬁ()_(‘vgayz MZ'Og SI TCE()_(‘)_ZT(CI()_(»)_E))

@ Vector y is the Lagrangian multiplier of equality constraints.
@ Vector Z is the Lagrangian multiplier of inequality constraints.
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The KKT conditions

The KKT conditions

The KKT conditions for (1)

ViL=0= Vf—Arj—AZ =0

VL =0= SZ—pul = @
V,L=0= Ce(X) =
V.L=0= C(X)—5 =0

e Matrix S = diag(s) and matrix Z = diag(Z).
@ Matrix Ag is the Jacobian of Cg and matrix A, is the Jacobian of ;.
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Newton's step

VL Vf—Agy — AZ
| VL | SZ — pl
Let F = v,e |~ Ce(%)
V.L G(x)-5

The interior point method uses Newton's method to solve F = 0.

Vol 0 —A(®) —A(R)

0 Z o s
VE=1 40 0 0 0

AR) —1 0 0

Newton'’s step

5x )_(k—‘rl = )?k = axﬁx
VF — pS — _F Sk-‘rl = Sk + CYSI)S
Py Yk+1 = Yk + Qypy
Pz Zk+1 = Zk + OzPz
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Algorithm: Interior point method (IPM)

Algorithm: Interior point method (IPM)
@ Given initial Xy, S0, Yo, Zo, and g
Q@ For k=0,1,2,... until converge
(a) Compute ﬁx»ﬁs,ﬁwﬁz and Ax, Os, Ay, Oz

(b) ()?k+13 §k+17}7k+17 zk-‘rl) = ()_(‘/ﬂ §k7 yka Zk) + (a’xﬁm 055[_557 ayﬁ)/? aZﬁZ)
(c) Adjust g1 < pik
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Some comments of IMP

Some comments of the interior point method

© The complementarity slackness condition says s;z; = 0 at the optimal
solution, by which, the parameter i, SZ = pl, needs to decrease to
zero as the current solution approaches to the optimal solution.

@ Why cannot we set i zero or small in the beginning? Because that
will make X going to the nearest constraint, and the entire process
will move along constraint by constraint, which again becomes an
exponential algorithm.

© To keep X, (or § and Z) too close any constraints, IPM also limits the
step size of 5§ and Z

al® = max{« € (0, 1],

S+ aps >
al®™ =max{a € (0,1],Z+ap, > (1 —7)Z
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Interior point method for linear programming

@ We will use linear programming to illustrate the details of IPM.

The primal The dual
ming ¢'X maxs bTX
st.  AX=b, s.t. ATX+5=2¢,
X >0. s> 0.
o KKT conditions
ATX+5=2¢
A% = b
XiSj = 0
X>0,§>0

15/
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Solve problem

X1 S1
X2 52
LetX: ,5: 9
Xn Sn
AV A E—
F = AR — b
XS — ué

@ The problem is to solve F =0
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Newton's method

Using Newton's method

0 AT |
VF=| A 0 0
S 0 X
ﬁx Xk+1 Xk + axﬁx
VF| p\ | =—F X1 = /\k + )P
P Ziy1 = Zx + azp;
@ How to decide px?
o L = 7xk * S is called duality measure.
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The central path

The central path

Xr
@ The central path: a set of points, p(7) = [ A; |, defined by the
Zr
solution of the equation
ATX+5 = ¢
AX = b
XiSi = T i=1,2,---.n
X,s > 0
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Algorithm

Algorithm: The interior point method for solving linear programming

@ Given an interior point Xy and the initial guess of slack variables 5
Q@ For k=0,1,...

0 AT | Axy b — A%,
(a) Solve A 0 0 AN | = -5 — ATX, for
S0 Xk Asy —XkSke + oy ke
oK € [0, 1].
Xkt1 Xk + o Axy
(b) Compute (ax, ay, as) s.t. Mar | = M +anAr | isin the
Skt1 Sk + asAsy

neighborhood of the central path

€ F||IXS€ — né|| < 0u p for some 6 € (0, 1].

=
5
N—r
Il
w0l > Xy
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Filter method

@ There are two goals of constrained optimization:
@ Minimize the objective function.
@ Satisfy the constraints.

Suppose the problem is

ming f(X)
st. c(X)=0 forieé&
¢i(X)>0 forieZ

e Define h(X) penalty functions of constraints.

h(R) = la(®) + D[],

icE ieT
in which the notation [z]~ = max{0, —z}.
min £ (X)
e The goals become { min h(%)
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The filter method

e A pair (fy, hx) dominates (f, hy) if fx < f; and hx < h;.
@ A filter is a list of pairs (fx, hx) such that no pair dominates any other.

@ The filter method only accepts the steps that are not dominated by
other pairs.

Algorithm: The filter method

@ Given initial Xy and an initial trust region Ag.
Q@ For k=0,1,2,... until converge

@ Compute a trial X by solving a local quadric programming model
@ If (fT,hT) is accepted to the filter
o Set Xiy1 = X', add (f, h™) to the filter, and remove pairs dominated
by it.
Else

@ Set Xx1+1 = Xk and decrease Ay.
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The Maratos effect

@ The Maratos effect shows the filter method could reject a good step.

minf(x1, x2) = 2(x% 4+ x5 — 1) — x1
X1,X2

st.x?+x5—1=0

@ The optimal solution is X* = (1,0)
o Subpose % — cosf \ . sin? 0
PP K= sing ) "P=  —sinfcosh

3 R 4B — cosf + sin? 6
kL = X T Pk = sinf(1 — cos )
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Reject a good step
cosf —1
sinf

= /cos26 — 2cosf + 1 +sin2 0 = /2(1 — cos 6)

o [|Xky1 — X7l
cosf +sin?0 -1
sinf —sinfcos ||
= \/cos2 0(1 — cos )2 +sin? f(1 — cos0)2 = /(1 — cosh)?
M = —. This step gives a quadratic convergence.
1% = %[> 2

@ However, the filter method will reject this step because

f(Xx) = —cosf, and c(Xx) =0,

o [IX —X*[| =

cos (1 — cosb)
sin 6( 1 — cos 0)

@ Therefore

f(Req1) = —cosf —sin20 = sin? 0 — cosf > £(X)
c(Xr1) =sin?6 > 0= c(X)
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The second order correction

The second order correction could help to solve this problem.
o Instead of V(%) Bk + c(Xx) = 0, use quadratic approximation

S 1- S
c(%i) + V(%) T di + 5 di Vie(R)di = 0. (3)

e Suppose || di—Px|| is small. Use Taylor expansion to approximate
quadratic term

(X + Pr) ~ c(%) + V(%) T Br + Pk Vi €(3)Pr-

STV () ~ 3BT VAC(RP ~ €(F+ i) — c(%e) — V() i
e Equation (3) can be rewritten as
V(%) Tdi + (e + Br) — V() "B = 0
@ Use the corrected linearized constraint:
V(%) TP+ c(% + Pk) — V(%) Px = 0.
(The original linearized constraint is V(%)™ p + c(X) = 0.)
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