Numerical Optimization

Unit 9：Penalty Method and Interior Point Method Unit 10：Filter Method and the Maratos Effect

Che－Rung Lee

Scribe：陳南喜
May 1， 2011

Penalty method

- The idea is to add penalty terms to the objective function, which turns a constrained optimization problem to an unconstrained one.
Quadratic penalty function

Example (For equality constraints)

$\min x_{1}+x_{2}$ subject to $x_{1}^{2}+x_{2}^{2}-2=0 \quad\left(\vec{x}^{*}=(1,1)\right)$
\Rightarrow Define $Q(\vec{x}, \mu)=x_{1}+x_{2}+\frac{\mu}{2}\left(x_{1}^{2}+x_{2}^{2}-2\right)^{2}$
For $\mu=1$,

$$
\nabla Q(\vec{x}, 1)=\binom{1+2\left(x_{1}^{2}+x_{2}^{2}-2\right) x_{1}}{1+2\left(x_{1}^{2}+x_{2}^{2}-2\right) x_{2}}=\binom{0}{0},\binom{\vec{x}_{1}^{*}}{\vec{x}_{2}^{*}}=\binom{-1.1}{-1.1}
$$

For $\mu=10$,
$\nabla Q(\vec{x}, 10)=\binom{1+20\left(x_{1}^{2}+x_{2}^{2}-2\right) x_{1}}{1+20\left(x_{1}^{2}+x_{2}^{2}-2\right) x_{2}}=\binom{0}{0},\binom{\vec{x}_{1}^{*}}{\vec{x}_{2}^{*}}=\binom{-1.0000001}{-1.0000001}$

Size of μ

- It seems the larger μ, the better solution is.
- When μ is large, matrix $\nabla^{2} Q \approx \mu \nabla c \nabla c^{\top}$ is ill-conditioned.

$$
\begin{gathered}
Q(x, \mu)=f(x)+\frac{\mu}{2}(c(x))^{2} \\
\nabla Q=\nabla f+\mu c \nabla c \\
\nabla^{2} Q=\nabla^{2} f+\mu \nabla c \nabla c^{T}+\mu c \nabla^{2} c
\end{gathered}
$$

- μ cannot be too small either.

Example

$$
\min _{\vec{x}}-5 x_{1}^{2}+x_{2}^{2} \text { s.t. } x_{1}=1 .
$$

$$
\hat{Q}(\vec{x}, \mu)=-5 x_{1}^{2}+x_{2}^{2}+\frac{\mu}{2}\left(x_{1}-1\right)^{2}
$$

For $\mu<10$, the problem $\min Q(\vec{x}, \mu)$ is unbounded.

Quadratic penalty function

- Picks a proper initial guess of μ and gradually increases it.

Algorithm: Quadratic penalty function

(1) Given $\mu_{0}>0$ and \vec{x}_{0}
(2) For $k=0,1,2, \ldots$
(1) Solve $\min _{\vec{x}} Q\left(:, \mu_{k}\right)=f(\vec{x})+\frac{\mu_{k}}{2} \sum_{i \in \mathbb{E}} c_{i}^{2}(\vec{x})$.
(2) If converged, stop
(3) Increase $\mu_{k+1}>\mu_{k}$ and find a new x_{k+1}

- Problem: the solution is not exact for $\mu \leq \infty$.

Augmented Lagrangian method

- Use the Lagrangian function to rescue the inexactness problem.
- Let

$$
\begin{aligned}
& \mathcal{L}(\vec{x}, \vec{\rho}, \mu)=f(\vec{x})-\sum_{i \in \varepsilon} \rho_{i} c_{i}(\vec{x})+\frac{\mu}{2} \sum_{i \in \varepsilon} c_{i}^{2}(\vec{x}) \\
& \nabla \mathcal{L}=\nabla f(\vec{x})-\sum_{i \in \varepsilon} \rho_{i} \nabla c_{i}(\vec{x})+\mu \sum_{i \in \varepsilon} c_{i}(\vec{x}) \nabla c_{i} .
\end{aligned}
$$

- By the Lagrangian theory, $\nabla \mathcal{L}=\nabla f-\sum_{i \in \varepsilon} \underbrace{\left(\rho_{i}-\mu c_{i}\right)}_{\lambda_{i}^{*}} \nabla c_{i}$.
- At the optimal solution, $c_{i}\left(\vec{x}^{*}\right)=\frac{-1}{\mu}\left(\lambda_{i}^{*}-\rho_{i}\right)$.
- If we can approximate $\rho_{i} \longrightarrow \lambda_{i}^{*}, \mu_{k}$ need not be increased indefinitely,

$$
\lambda_{i}^{k+1}=\lambda_{i}^{k}-\mu_{k} c_{i}\left(x_{k}\right)
$$

- Algorithm: update ρ_{i} at each iteration.

Inequality constraints

There are two approaches to handle inequality constraints.
(1) Make the object function nonsmooth (non-differentiable at some points).
(2) Add slack variable to turn the inequality constraints to equality constraints.

$$
c_{i} \geq 0 \Rightarrow\left\{\begin{array}{l}
c_{i}(\vec{x})-s_{i}=0 \\
s_{i} \geq 0
\end{array}\right.
$$

- But then we have bounded constraints for slack variables.

We will focus on the second approach here.

Inequality constraints

- Suppose the augmented Lagrangian method is used and all inequality constraints are converted to bounded constraints.
- For a fixed μ and $\vec{\lambda}$,

$$
\begin{array}{ll}
\min _{\vec{x}} & \mathcal{L}(\vec{x}, \vec{\lambda}, \mu)=f(\vec{x})-\sum_{i=1}^{m} \lambda_{i} c_{i}(\vec{x})+\frac{\mu}{2} \sum_{i=1}^{m} c_{i}^{2}(\vec{x}) \\
\text { s.t. } & \vec{\ell} \leq \vec{x} \leq \vec{u}
\end{array}
$$

- The first order necessary condition for \vec{x} to be a solution of the above problem is

$$
\vec{x}=P\left(\vec{x}-\nabla_{x} \mathcal{L}_{A}(\vec{x}, \vec{\lambda}, \mu), \vec{\ell}, \vec{u}\right),
$$

where

$$
P(\vec{g}, \vec{\ell}, \vec{u})=\left\{\begin{array}{ll}
\ell_{i}, & \text { if } g_{i} \leq \ell_{i} ; \\
g_{i}, & \text { if } g_{i} \in\left(\ell_{i}, u_{i}\right) ; \\
u_{i}, & \text { if } g_{i} \geq u_{i} .
\end{array} \quad \text { for all } i=1,2, \ldots, n .\right.
$$

Nonlinear gradient projection method

Sequential quadratic programming + trust region method to solve

$$
\min _{\vec{x}} f(\vec{x}) \quad \text { s.t. } \quad \vec{\ell} \leq \vec{x} \leq \vec{u}
$$

Algorithm: Nonlinear gradient projection method

(1) At each iteration, build a quadratic model

$$
q(\vec{x})=\frac{1}{2}\left(x-x_{k}\right)^{T} B_{k}\left(x-x_{k}\right)+\nabla f_{k}^{T}\left(x-x_{k}\right)
$$

where B_{k} is SPD approximation of $\nabla^{2} f\left(x_{k}\right)$.
(2) For some Δ_{k}, use the gradient projection method to solve

$$
\begin{array}{ll}
\min _{\vec{x}} & q(\vec{x}) \\
\text { s.t. } & \max \left(\vec{\ell}, \vec{x}_{k}-\Delta_{k}\right) \leq \vec{x} \leq \max \left(\vec{u}, \vec{x}_{k}+\Delta_{k}\right),
\end{array}
$$

(3) Update Δ_{k} and repeat 1-3 until converge.

Interior point method

- Consider the problem

$$
\begin{array}{ll}
\min _{\vec{x}} & f(\vec{x}) \\
\text { s.t. } & C_{E}(\vec{x})=0 \\
& C_{l}(\vec{x})-\vec{s}=0 \\
& \vec{s} \geq 0
\end{array}
$$

where \vec{s} are slack variables.

- The interior point method starts a point inside the feasible region, and builds "walls" on the boundary of the feasible region.
- A barrier function goes to infinity when the input is close to zero.

$$
\min _{\overrightarrow{\vec{x}}, \vec{s}} f(\vec{x})-\mu \sum_{i=1}^{m} \log \left(s_{i}\right) \text { s.t. } \begin{align*}
& C_{E}(\vec{x})=0 \tag{1}\\
& C_{l}(\vec{x})-\vec{s}=0
\end{align*}
$$

- The function $f(x)=-\log x \rightarrow \infty$ as $x \rightarrow 0$.
- μ : barrier parameter

An example

Example $(\min -x+1$, s.t. $x \leq 1)$

$$
\min _{\vec{x}}-x+1-\mu \ln (1-x)
$$

- The Lagrangian of (1) is

$$
\mathcal{L}(\vec{x}, \vec{s}, \vec{y}, \vec{z})=f(\vec{x})-\mu \sum_{i=1}^{m} \log \left(s_{i}\right)-\vec{y}^{T} C_{E}(\vec{x})-\vec{z}^{T}\left(C_{l}(\vec{x})-\vec{s}\right)
$$

(1) Vector \vec{y} is the Lagrangian multiplier of equality constraints.
(2) Vector \vec{z} is the Lagrangian multiplier of inequality constraints.

The KKT conditions

The KKT conditions

The KKT conditions for (1)

$$
\begin{array}{rlrl}
\nabla_{x} \mathcal{L} & =0 \Rightarrow & \nabla f-A_{E} \vec{y}-A_{l} \vec{z} & =0 \\
\nabla_{s} \mathcal{L} & =0 \Rightarrow & S Z-\mu I & =0 \\
\nabla_{y} \mathcal{L}=0 \Rightarrow & C_{E}(\vec{x}) & =0 \tag{2}\\
\nabla_{z} \mathcal{L}=0 \Rightarrow & C_{l}(\vec{x})-\vec{s} & =0
\end{array}
$$

- Matrix $S=\operatorname{diag}(\vec{s})$ and matrix $Z=\operatorname{diag}(\vec{z})$.
- Matrix A_{E} is the Jacobian of C_{E} and matrix A_{I} is the Jacobian of C_{I}.

Newton's step

Let $F=\left(\begin{array}{c}\nabla_{x} \mathcal{L} \\ \nabla_{s} \mathcal{L} \\ \nabla_{y} \mathcal{L} \\ \nabla_{z} \mathcal{L}\end{array}\right)=\left(\begin{array}{c}\nabla f-A_{E} \vec{y}-A_{I} \vec{z} \\ S Z-\mu I \\ C_{E}(\vec{x}) \\ C_{I}(\vec{x})-\vec{s}\end{array}\right)$.
The interior point method uses Newton's method to solve $F=0$.

$$
\nabla F=\left[\begin{array}{cccc}
\nabla_{x x} \mathcal{L} & 0 & -A_{E}(\vec{x}) & -A_{l}(\vec{x}) \\
0 & Z & 0 & S \\
A_{E}(\vec{x}) & 0 & 0 & 0 \\
A_{l}(\vec{x}) & -l & 0 & 0
\end{array}\right]
$$

Newton's step

$$
\nabla F=\left(\begin{array}{c}
\vec{p}_{x} \\
\vec{p}_{s} \\
\vec{p}_{y} \\
\vec{p}_{z}
\end{array}\right)=-F \quad \begin{aligned}
& \vec{x}_{k+1}=\vec{x}_{k}+\alpha_{x} \vec{p}_{x} \\
& \vec{s}_{k+1}=\vec{s}_{k}+\alpha_{s} \vec{p}_{s} \\
& \vec{y}_{k+1}=\vec{y}_{k}+\alpha_{y} \vec{p}_{y} \\
& \vec{z}_{k+1}=\vec{z}_{k}+\alpha_{z} \vec{p}_{z}
\end{aligned}
$$

Algorithm: Interior point method (IPM)

Algorithm: Interior point method (IPM)

(1) Given initial $\vec{x}_{0}, \vec{s}_{0}, \vec{y}_{0}, \vec{z}_{0}$, and μ_{0}
(2) For $k=0,1,2, \ldots$ until converge
(a) Compute $\vec{p}_{x}, \vec{p}_{s}, \vec{p}_{y}, \vec{p}_{z}$ and $\alpha_{x}, \alpha_{s}, \alpha_{y}, \alpha_{z}$
(b) $\left(\vec{x}_{k+1}, \vec{s}_{k+1}, \vec{y}_{k+1}, \vec{z}_{k+1}\right)=\left(\vec{x}_{k}, \vec{s}_{k}, \vec{y}_{k}, \vec{z}_{k}\right)+\left(\alpha_{x} \vec{p}_{x}, \alpha_{s} \vec{p}_{s}, \alpha_{y} \vec{p}_{y}, \alpha_{z} \vec{p}_{z}\right)$
(c) Adjust $\mu_{k+1}<\mu_{k}$

Some comments of IMP

Some comments of the interior point method
(1) The complementarity slackness condition says $s_{i} z_{i}=0$ at the optimal solution, by which, the parameter $\mu, S Z=\mu I$, needs to decrease to zero as the current solution approaches to the optimal solution.
(2) Why cannot we set μ zero or small in the beginning? Because that will make \vec{x}_{k} going to the nearest constraint, and the entire process will move along constraint by constraint, which again becomes an exponential algorithm.
(3) To keep \vec{x}_{k} (or \vec{s} and \vec{z}) too close any constraints, IPM also limits the step size of \vec{s} and \vec{z}

$$
\begin{aligned}
\alpha_{s}^{\max } & =\max \left\{\alpha \in(0,1], \vec{s}+\alpha \vec{p}_{s} \geq(1-\tau) \vec{s}\right\} \\
\alpha_{z}^{\max } & =\max \left\{\alpha \in(0,1], \vec{z}+\alpha \vec{p}_{z} \geq(1-\tau) \vec{z}\right\}
\end{aligned}
$$

Interior point method for linear programming

- We will use linear programming to illustrate the details of IPM.

The primal		The dual	
$\min _{\vec{x}}$	$\vec{c}^{T} \vec{x}$	$\max _{\vec{\lambda}}$	$\vec{b}^{T} \vec{\lambda}$
s.t.	$A \vec{x}=\vec{b}$,	s.t.	$A^{T} \vec{\lambda}+\vec{s}=\vec{c}$,
	$\vec{x} \geq 0$.		$\vec{s} \geq 0$.

- KKT conditions

$$
\begin{aligned}
& A^{T} \vec{\lambda}+\vec{s}=\vec{c} \\
& A \vec{x}=\vec{b} \\
& x_{i} s_{i}=0 \\
& \vec{x} \geq 0, \vec{s} \geq 0
\end{aligned}
$$

Solve problem

$$
\begin{aligned}
& \text { Let } X=\left(\begin{array}{llll}
x_{1} & & & \\
& x_{2} & & \\
& & \ddots & \\
& & & x_{n}
\end{array}\right), S=\left(\begin{array}{llll}
s_{1} & & & \\
& s_{2} & & \\
& & \ddots & \\
& & & s_{n}
\end{array}\right), \\
& F=\left[\begin{array}{c}
A^{T} \vec{\lambda}+\vec{s}-\vec{c} \\
A \vec{x}-\vec{b} \\
X \vec{s}-\mu \vec{e}
\end{array}\right]
\end{aligned}
$$

- The problem is to solve $F=0$

Newton's method

Using Newton's method

$$
\begin{gathered}
\nabla F=\left[\begin{array}{lll}
0 & A^{T} & l \\
A & 0 & 0 \\
S & 0 & X
\end{array}\right] \\
\nabla F\left[\begin{array}{l}
\vec{p}_{x} \\
\vec{p}_{\lambda} \\
\vec{p}_{z}
\end{array}\right]=-F \begin{array}{ll}
\vec{x}_{k+1}=\vec{x}_{k}+\alpha_{x} \vec{p}_{x} \\
\vec{\lambda}_{k+1}=\vec{\lambda}_{k}+\alpha_{\lambda} \vec{p}_{\lambda} \\
\vec{z}_{k+1}=\vec{z}_{k}+\alpha_{z} \vec{p}_{z}
\end{array}
\end{gathered}
$$

- How to decide μ_{k} ?
- $\mu_{k}=\frac{1}{n} \vec{x}_{k} \cdot * \vec{s}_{k}$ is called duality measure.

The central path

The central path

- The central path: a set of points, $p(\tau)=\left(\begin{array}{c}x_{\tau} \\ \lambda_{\tau} \\ z_{\tau}\end{array}\right)$, defined by the solution of the equation

$$
\begin{aligned}
A^{T} \vec{\lambda}+\vec{s} & =\vec{c} \\
A \vec{x} & =\vec{b} \\
x_{i} s_{i} & =\tau \quad i=1,2, \cdots, n \\
\vec{x}, \vec{s} & >0
\end{aligned}
$$

Algorithm

Algorithm: The interior point method for solving linear programming

(1) Given an interior point \vec{x}_{0} and the initial guess of slack variables \vec{s}_{0}
(2) For $k=0,1, \ldots$
(a) Solve $\left(\begin{array}{ccc}0 & A^{T} & I \\ A & 0 & 0 \\ S^{k} & 0 & X^{k}\end{array}\right)\left(\begin{array}{c}\Delta x_{k} \\ \Delta \lambda_{k} \\ \Delta s_{k}\end{array}\right)=\left(\begin{array}{c}\vec{b}-A \vec{x}_{k} \\ \vec{c}-\vec{s}_{k}-A^{T} \vec{\lambda}_{k} \\ -X^{k} S^{k} e+\sigma_{k} \mu_{k} e\end{array}\right)$ for

$$
\sigma_{k} \in[0,1] .
$$

(b) Compute $\left(\alpha_{x}, \alpha_{\lambda}, \alpha_{s}\right)$ s.t. $\left(\begin{array}{c}\vec{x}_{k+1} \\ \vec{\lambda}_{k+1} \\ \vec{s}_{k+1}\end{array}\right)=\left(\begin{array}{c}\vec{x}_{k}+\alpha_{x} \Delta x_{k} \\ \vec{\lambda}_{k}+\alpha_{\lambda} \Delta \lambda_{k} \\ \vec{s}_{k}+\alpha_{s} \Delta s_{k}\end{array}\right)$ is in the neighborhood of the central path

$$
\mathcal{N}(\theta)=\left\{\left.\left(\begin{array}{c}
\vec{x} \\
\vec{\lambda} \\
\vec{s}
\end{array}\right) \in \mathcal{F} \right\rvert\,\|X S \vec{e}-\mu \vec{e}\| \leq \theta \mu\right\} \text { for some } \theta \in(0,1] \text {. }
$$

Filter method

- There are two goals of constrained optimization:
(1) Minimize the objective function.
(2) Satisfy the constraints.

Example

Suppose the problem is

$$
\begin{array}{ll}
\min _{\vec{x}} & f(\vec{x}) \\
\text { s.t. } & c_{i}(\vec{x})=0 \quad \text { for } i \in \mathcal{E} \\
& c_{i}(\vec{x}) \geq 0 \quad \text { for } i \in \mathcal{I}
\end{array}
$$

- Define $h(\vec{x})$ penalty functions of constraints.

$$
h(\vec{x})=\sum_{i \in \mathcal{E}}\left|c_{i}(\vec{x})\right|+\sum_{i \in \mathcal{I}}\left[c_{i}(\vec{x})\right]^{-},
$$

in which the notation $[z]^{-}=\max \{0,-z\}$.

- The goals become $\left\{\begin{array}{l}\min f(\vec{x}) \\ \min h(\vec{x})\end{array}\right.$

The filter method

- A pair $\left(f_{k}, h_{k}\right)$ dominates $\left(f_{l}, h_{l}\right)$ if $f_{k}<f_{l}$ and $h_{k}<h_{l}$.
- A filter is a list of pairs $\left(f_{k}, h_{k}\right)$ such that no pair dominates any other.
- The filter method only accepts the steps that are not dominated by other pairs.

Algorithm: The filter method

(1) Given initial \vec{x}_{0} and an initial trust region Δ_{0}.
(2) For $k=0,1,2, \ldots$ until converge
(1) Compute a trial \vec{x}^{+}by solving a local quadric programming model
(2) If $\left(f^{+}, h^{+}\right)$is accepted to the filter

- Set $\vec{x}_{k+1}=\vec{x}^{+}$, add $\left(f^{+}, h^{+}\right)$to the filter, and remove pairs dominated by it.
Else
- Set $\vec{x}_{k+1}=\vec{x}_{k}$ and decrease Δ_{k}.

The Maratos effect

- The Maratos effect shows the filter method could reject a good step.

Example

$$
\begin{aligned}
& \min _{x_{1}, x_{2}} f\left(x_{1}, x_{2}\right)=2\left(x_{1}^{2}+x_{2}^{2}-1\right)-x_{1} \\
& \text { s.t. } x_{1}^{2}+x_{2}^{2}-1=0
\end{aligned}
$$

- The optimal solution is $\vec{x}^{*}=(1,0)$
- Suppose $\vec{x}_{k}=\binom{\cos \theta}{\sin \theta}, \vec{p}_{k}=\binom{\sin ^{2} \theta}{-\sin \theta \cos \theta}$

$$
\vec{x}_{k+1}=\vec{x}_{k}+\vec{p}_{k}=\binom{\cos \theta+\sin ^{2} \theta}{\sin \theta(1-\cos \theta)}
$$

Reject a good step

- $\left\|\vec{x}_{k}-\vec{x}^{*}\right\|=\left\|\binom{\cos \theta-1}{\sin \theta}\right\|$

$$
=\sqrt{\cos ^{2} \theta-2 \cos \theta+1+\sin ^{2} \theta}=\sqrt{2(1-\cos \theta)}
$$

- $\left\|\vec{x}_{k+1}-\vec{x}^{*}\right\|$

$$
=\left\|\begin{array}{c}
\cos \theta+\sin ^{2} \theta-1 \\
\sin \theta-\sin \theta \cos \theta
\end{array}\right\|=\left\|\begin{array}{c}
\cos \theta(1-\cos \theta) \\
\sin \theta(1-\cos \theta)
\end{array}\right\|
$$

$$
=\sqrt{\cos ^{2} \theta(1-\cos \theta)^{2}+\sin ^{2} \theta(1-\cos \theta)^{2}}=\sqrt{(1-\cos \theta)^{2}}
$$

- Therefore $\frac{\left\|\vec{x}_{k+1}-\vec{x}^{*}\right\|}{\left\|\vec{x}_{k}-\vec{x}^{*}\right\|^{2}}=\frac{1}{2}$. This step gives a quadratic convergence.
- However, the filter method will reject this step because

$$
\begin{gathered}
f\left(\vec{x}_{k}\right)=-\cos \theta, \text { and } c\left(\vec{x}_{k}\right)=0, \\
f\left(\vec{x}_{k+1}\right)=-\cos \theta-\sin 2 \theta=\sin ^{2} \theta-\cos \theta>f\left(\vec{x}_{k}\right) \\
c\left(\vec{x}_{k+1}\right)=\sin ^{2} \theta>0=c\left(\vec{x}_{k}\right)
\end{gathered}
$$

The second order correction

The second order correction could help to solve this problem.

- Instead of $\nabla c\left(\vec{x}_{k}\right)^{T} \vec{p}_{k}+c\left(\vec{x}_{k}\right)=0$, use quadratic approximation

$$
\begin{equation*}
c\left(\vec{x}_{k}\right)+\nabla c\left(\vec{x}_{k}\right)^{T} \vec{d}_{k}+\frac{1}{2} \vec{d}_{k}^{T} \nabla_{x x}^{2} c(\vec{x}) \vec{d}_{k}=0 . \tag{3}
\end{equation*}
$$

- Suppose $\left\|\vec{d}_{k}-\vec{p}_{k}\right\|$ is small. Use Taylor expansion to approximate quadratic term

$$
\begin{gathered}
c\left(\vec{x}_{k}+\vec{p}_{k}\right) \approx c\left(\vec{x}_{k}\right)+\nabla c\left(\vec{x}_{k}\right)^{T} \vec{p}_{k}+\frac{1}{2} \vec{p}_{k}^{T} \nabla_{x x}^{2} c(\vec{x}) \vec{p}_{k} . \\
\frac{1}{2} \vec{d}_{k}^{T} \nabla_{x x}^{2} c(\vec{x}) \vec{d}_{k} \approx \frac{1}{2} \vec{p}_{k}^{T} \nabla_{x x}^{2} c(\vec{x}) \vec{p}_{k} \approx c\left(\vec{x}_{k}+\vec{p}_{k}\right)-c\left(\vec{x}_{k}\right)-\nabla c\left(\vec{x}_{k}\right)^{T} \vec{p}_{k} .
\end{gathered}
$$

- Equation (3) can be rewritten as

$$
\nabla c\left(\vec{x}_{k}\right)^{T} \vec{d}_{k}+c\left(\vec{x}_{k}+\vec{p}_{k}\right)-\nabla c\left(\vec{x}_{k}\right)^{T} \vec{p}_{k}=0
$$

- Use the corrected linearized constraint:
$\nabla c\left(\vec{x}_{k}\right)^{T} \vec{p}+c\left(\vec{x}_{k}+\vec{p}_{k}\right)-\nabla c\left(\vec{x}_{k}\right)^{T} \vec{p}_{k}=0$.
(The original linearized constraint is $\nabla c\left(\vec{x}_{k}\right)^{T} \vec{p}+c\left(\vec{x}_{k}\right)=0$.)

