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Penalty method

The idea is to add penalty terms to the objective function, which
turns a constrained optimization problem to an unconstrained one.

Quadratic penalty function

Example (For equality constraints)

min x1 + x2 subject to x21 + x22 − 2 = 0 (x⃗∗ = (1, 1))

⇒ Define Q(x⃗ , �) = x1 + x2 +
�

2
(x21 + x22 − 2)2

For � = 1,

∇Q(x⃗ , 1) =

(
1 + 2(x21 + x22 − 2)x1
1 + 2(x21 + x22 − 2)x2

)
=

(
0
0

)
,

(
x⃗∗1
x⃗∗2

)
=

(
−1.1
−1.1

)
For � = 10,

∇Q(x⃗ , 10) =

(
1 + 20(x21 + x22 − 2)x1
1 + 20(x21 + x22 − 2)x2

)
=

(
0
0

)
,

(
x⃗∗1
x⃗∗2

)
=

(
−1.0000001
−1.0000001

)
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Size of �

It seems the larger �, the better solution is.

When � is large, matrix ∇2Q ≈ �∇c∇cT is ill-conditioned.

Q(x , �) = f (x) +
�

2
(c(x))2

∇Q = ∇f + �c∇c

∇2Q = ∇2f + �∇c∇cT + �c∇2c

� cannot be too small either.

Example

min
x⃗
−5x21 + x22 s.t. x1 = 1.

Q(x⃗ , �) = −5x21 + x22 +
�

2
(x1 − 1)2.

For � < 10, the problem minQ(x⃗ , �) is unbounded.
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Quadratic penalty function

Picks a proper initial guess of � and gradually increases it.

Algorithm: Quadratic penalty function

1 Given �0 > 0 and x⃗0
2 For k = 0, 1, 2, ...

1 Solve min
x⃗

Q(:, �k) = f (x⃗) +
�k

2

∑
i∈E

c2i (x⃗).

2 If converged, stop
3 Increase �k+1 > �k and find a new xk+1

Problem: the solution is not exact for � ≤ ∞.
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Augmented Lagrangian method

Use the Lagrangian function to rescue the inexactness problem.

Let
ℒ(x⃗ , �⃗, �) = f (x⃗)−

∑
i∈"

�ici (x⃗) +
�

2

∑
i∈"

c2i (x⃗)

∇ℒ = ∇f (x⃗)−
∑
i∈"

�i∇ci (x⃗) + �
∑
i∈"

ci (x⃗)∇ci .

By the Lagrangian theory, ∇ℒ = ∇f −
∑

i∈" (�i − �ci )︸ ︷︷ ︸
�∗i

∇ci .

At the optimal solution, ci (x⃗
∗) =

−1

�
(�∗i − �i ).

If we can approximate �i −→ �∗i , �k need not be increased
indefinitely,

�k+1
i = �ki − �kci (xk)

Algorithm: update �i at each iteration.
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Inequality constraints

There are two approaches to handle inequality constraints.

1 Make the object function nonsmooth (non-differentiable at some
points).

2 Add slack variable to turn the inequality constraints to equality
constraints.

ci ≥ 0⇒
{

ci (x⃗)− si = 0
si ≥ 0

But then we have bounded constraints for slack variables.

We will focus on the second approach here.
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Inequality constraints

Suppose the augmented Lagrangian method is used and all inequality
constraints are converted to bounded constraints.

For a fixed � and �⃗,

min
x⃗

ℒ(x⃗ , �⃗, �) = f (x⃗)−
m∑
i=1

�ici (x⃗) +
�

2

m∑
i=1

c2i (x⃗)

s.t. ℓ⃗ ≤ x⃗ ≤ u⃗

The first order necessary condition for x⃗ to be a solution of the above
problem is

x⃗ = P(x⃗ −∇xℒA(x⃗ , �⃗, �), ℓ⃗, u⃗),

where

P(g⃗ , ℓ⃗, u⃗) =

⎧⎨⎩
ℓi , if gi ≤ ℓi ;
gi , if gi ∈ (ℓi , ui );
ui , if gi ≥ ui .

for all i = 1, 2, . . . , n.
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Nonlinear gradient projection method

Sequential quadratic programming + trust region method to solve

minx⃗ f (x⃗) s.t. ℓ⃗ ≤ x⃗ ≤ u⃗

Algorithm: Nonlinear gradient projection method

1 At each iteration, build a quadratic model

q(x⃗) =
1

2
(x − xk)TBk(x − xk) +∇f Tk (x − xk)

where Bk is SPD approximation of ∇2f (xk).

2 For some Δk , use the gradient projection method to solve

min
x⃗

q(x⃗)

s.t. max(ℓ⃗, x⃗k −Δk) ≤ x⃗ ≤ max(u⃗, x⃗k + Δk),

3 Update Δk and repeat 1-3 until converge.

(UNIT 9,10) Numerical Optimization May 1, 2011 8 / 24



Interior point method

Consider the problem

minx⃗ f (x⃗)
s.t. CE (x⃗) = 0

CI (x⃗)− s⃗ = 0
s⃗ ≥ 0

where s⃗ are slack variables.

The interior point method starts a point inside the feasible region,
and builds “walls” on the boundary of the feasible region.

A barrier function goes to infinity when the input is close to zero.

min
x⃗ ,⃗s

f (x⃗)− �
m∑
i=1

log(si ) s.t.
CE (x⃗) = 0
CI (x⃗)− s⃗ = 0

(1)

The function f (x) = − log x →∞ as x → 0.
�: barrier parameter
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An example

Example (min−x + 1, s.t. x ≤ 1)

minx⃗ −x + 1− � ln(1− x)

� = 1, x∗ = 0.00005
� = 0.1, x∗ = 0.89999
� = 0.01, x∗ = 0.989999
� = 10−5, x∗ = 0.99993

6

-

y

x

1− x ≥ 0@
@
@
@
@
@
@
@
@

The Lagrangian of (1) is

ℒ(x⃗ , s⃗, y⃗ , z⃗) = f (x⃗)− �
m∑
i=1

log(si )− y⃗TCE (x⃗)− z⃗T (CI (x⃗)− s⃗)

1 Vector y⃗ is the Lagrangian multiplier of equality constraints.
2 Vector z⃗ is the Lagrangian multiplier of inequality constraints.
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The KKT conditions

The KKT conditions

The KKT conditions for (1)

∇xℒ = 0⇒ ∇f − AE y⃗ − AI z⃗ = 0
∇sℒ = 0⇒ SZ − �I = 0
∇yℒ = 0⇒ CE (x⃗) = 0
∇zℒ = 0⇒ CI (x⃗)− s⃗ = 0

(2)

Matrix S = diag(⃗s) and matrix Z = diag(⃗z).

Matrix AE is the Jacobian of CE and matrix AI is the Jacobian of CI .
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Newton’s step

Let F =

⎛⎜⎜⎝
∇xℒ
∇sℒ
∇yℒ
∇zℒ

⎞⎟⎟⎠ =

⎛⎜⎜⎝
∇f − AE y⃗ − AI z⃗

SZ − �I
CE (x⃗)

CI (x⃗)− s⃗

⎞⎟⎟⎠.

The interior point method uses Newton’s method to solve F = 0.

∇F =

⎡⎢⎢⎣
∇xxℒ 0 −AE (x⃗) −AI (x⃗)

0 Z 0 S
AE (x⃗) 0 0 0
AI (x⃗) −I 0 0

⎤⎥⎥⎦
Newton’s step

∇F =

⎛⎜⎜⎝
p⃗x
p⃗s
p⃗y
p⃗z

⎞⎟⎟⎠ = −F

x⃗k+1 = x⃗k + �x p⃗x
s⃗k+1 = s⃗k + �s p⃗s
y⃗k+1 = y⃗k + �y p⃗y
z⃗k+1 = z⃗k + �z p⃗z
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Algorithm: Interior point method (IPM)

Algorithm: Interior point method (IPM)

1 Given initial x⃗0, s⃗0, y⃗0, z⃗0, and �0
2 For k = 0, 1, 2, . . . until converge

(a) Compute p⃗x , p⃗s , p⃗y , p⃗z and �x , �s , �y , �z

(b) (x⃗k+1, s⃗k+1, y⃗k+1, z⃗k+1) = (x⃗k , s⃗k , y⃗k , z⃗k) + (�x p⃗x , �s p⃗s , �y p⃗y , �z p⃗z)
(c) Adjust �k+1 < �k
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Some comments of IMP

Some comments of the interior point method

1 The complementarity slackness condition says sizi = 0 at the optimal
solution, by which, the parameter �, SZ = �I , needs to decrease to
zero as the current solution approaches to the optimal solution.

2 Why cannot we set � zero or small in the beginning? Because that
will make x⃗k going to the nearest constraint, and the entire process
will move along constraint by constraint, which again becomes an
exponential algorithm.

3 To keep x⃗k (or s⃗ and z⃗) too close any constraints, IPM also limits the
step size of s⃗ and z⃗

�max
s = max{� ∈ (0, 1], s⃗ + �p⃗s ≥ (1− � )⃗s}

�max
z = max{� ∈ (0, 1], z⃗ + �p⃗z ≥ (1− � )⃗z}
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Interior point method for linear programming

We will use linear programming to illustrate the details of IPM.

The primal The dual

minx⃗ c⃗T x⃗

s.t. Ax⃗ = b⃗,
x⃗ ≥ 0.

max
�⃗

b⃗T �⃗

s.t. AT �⃗+ s⃗ = c⃗ ,
s⃗ ≥ 0.

KKT conditions

AT �⃗+ s⃗ = c⃗

Ax⃗ = b⃗

xi si = 0

x⃗ ≥ 0, s⃗ ≥ 0
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Solve problem

Let X =

⎛⎜⎜⎜⎝
x1

x2
. . .

xn

⎞⎟⎟⎟⎠ , S =

⎛⎜⎜⎜⎝
s1

s2
. . .

sn

⎞⎟⎟⎟⎠ ,

F =

⎡⎣ AT �⃗+ s⃗ − c⃗

Ax⃗ − b⃗
X s⃗ − �e⃗

⎤⎦
The problem is to solve F = 0

(UNIT 9,10) Numerical Optimization May 1, 2011 16 / 24



Newton’s method

Using Newton’s method

∇F =

⎡⎣ 0 AT I
A 0 0
S 0 X

⎤⎦

∇F

⎡⎣ p⃗x
p⃗�
p⃗z

⎤⎦ = −F
x⃗k+1 = x⃗k + �x p⃗x
�⃗k+1 = �⃗k + ��p⃗�
z⃗k+1 = z⃗k + �z p⃗z

How to decide �k?

�k = 1
n x⃗k . ∗ s⃗k is called duality measure.
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The central path

The central path

The central path: a set of points, p(�) =

⎛⎝ x�
��
z�

⎞⎠, defined by the

solution of the equation

AT �⃗+ s⃗ = c⃗

Ax⃗ = b⃗

xi si = � i = 1, 2, ⋅ ⋅ ⋅ , n
x⃗ , s⃗ > 0
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Algorithm

Algorithm: The interior point method for solving linear programming

1 Given an interior point x⃗0 and the initial guess of slack variables s⃗0
2 For k = 0, 1, . . .

(a) Solve

⎛⎝ 0 AT I
A 0 0
Sk 0 X k

⎞⎠⎛⎝ Δxk
Δ�k
Δsk

⎞⎠ =

⎛⎝ b⃗ − Ax⃗k
c⃗ − s⃗k − AT �⃗k
−X kSke + �k�ke

⎞⎠ for

�k ∈ [0, 1].

(b) Compute (�x , ��, �s) s.t.

⎛⎝ x⃗k+1

�⃗k+1

s⃗k+1

⎞⎠ =

⎛⎝ x⃗k + �xΔxk
�⃗k + ��Δ�k
s⃗k + �sΔsk

⎞⎠ is in the

neighborhood of the central path

N (�) =

⎧⎨⎩
⎛⎝ x⃗

�⃗
s⃗

⎞⎠ ∈ ℱ
∣∣∣∣∣∣ ∥XSe⃗ − �e⃗∥ ≤ ��

⎫⎬⎭ for some � ∈ (0, 1].
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Filter method

There are two goals of constrained optimization:
1 Minimize the objective function.
2 Satisfy the constraints.

Example

Suppose the problem is

minx⃗ f (x⃗)
s.t. ci (x⃗) = 0 for i ∈ ℰ

ci (x⃗) ≥ 0 for i ∈ ℐ

Define h(x⃗) penalty functions of constraints.

h(x⃗) =
∑
i∈ℰ

∣ci (x⃗)∣+
∑
i∈ℐ

[ci (x⃗)]−,

in which the notation [z ]− = max{0,−z}.

The goals become

{
min f (x⃗)
min h(x⃗)
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The filter method

A pair (fk , hk) dominates (fl , hl) if fk < fl and hk < hl .

A filter is a list of pairs (fk , hk) such that no pair dominates any other.

The filter method only accepts the steps that are not dominated by
other pairs.

Algorithm: The filter method

1 Given initial x⃗0 and an initial trust region Δ0.
2 For k = 0, 1, 2, . . . until converge

1 Compute a trial x⃗+ by solving a local quadric programming model
2 If (f +, h+) is accepted to the filter

Set x⃗k+1 = x⃗+, add (f +, h+) to the filter, and remove pairs dominated
by it.

Else

Set x⃗k+1 = x⃗k and decrease Δk .
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The Maratos effect

The Maratos effect shows the filter method could reject a good step.

Example

min
x1,x2

f (x1, x2) = 2(x21 + x22 − 1)− x1

s.t. x21 + x22 − 1 = 0

The optimal solution is x⃗∗ = (1, 0)

Suppose x⃗k =

(
cos �
sin �

)
, p⃗k =

(
sin2 �

− sin � cos �

)

x⃗k+1 = x⃗k + p⃗k =

(
cos � + sin2 �
sin �(1− cos �)

)
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Reject a good step

∥x⃗k − x⃗∗∥ =

∥∥∥∥( cos � − 1
sin �

)∥∥∥∥
=
√

cos2 � − 2 cos � + 1 + sin2 � =
√

2(1− cos �)

∥x⃗k+1 − x⃗∗∥

=

∥∥∥∥ cos � + sin2 � − 1
sin � − sin � cos �

∥∥∥∥ =

∥∥∥∥ cos �(1− cos �)
sin �(1− cos �)

∥∥∥∥
=
√

cos2 �(1− cos �)2 + sin2 �(1− cos �)2 =
√

(1− cos �)2

Therefore
∥x⃗k+1 − x⃗∗∥
∥x⃗k − x⃗∗∥2

=
1

2
. This step gives a quadratic convergence.

However, the filter method will reject this step because

f (x⃗k) = − cos �, and c(x⃗k) = 0,

f (x⃗k+1) = − cos � − sin 2� = sin2 � − cos � > f (x⃗k)

c(x⃗k+1) = sin2 � > 0 = c(x⃗k)
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The second order correction

The second order correction could help to solve this problem.

Instead of ∇c(x⃗k)T p⃗k + c(x⃗k) = 0, use quadratic approximation

c(x⃗k) +∇c(x⃗k)T d⃗k +
1

2
d⃗T
k ∇2

xxc(x⃗)d⃗k = 0. (3)

Suppose ∥d⃗k−p⃗k∥ is small. Use Taylor expansion to approximate
quadratic term

c(x⃗k + p⃗k) ≈ c(x⃗k) +∇c(x⃗k)T p⃗k +
1

2
p⃗Tk ∇2

xxc(x⃗)p⃗k .

1

2
d⃗T
k ∇2

xxc(x⃗)d⃗k ≈
1

2
p⃗Tk ∇2

xxc(x⃗)p⃗k ≈ c(x⃗k + p⃗k)−c(x⃗k)−∇c(x⃗k)T p⃗k .

Equation (3) can be rewritten as

∇c(x⃗k)T d⃗k + c(x⃗k + p⃗k)−∇c(x⃗k)T p⃗k = 0

Use the corrected linearized constraint:
∇c(x⃗k)T p⃗ + c(x⃗k + p⃗k)−∇c(x⃗k)T p⃗k = 0.
(The original linearized constraint is ∇c(x⃗k)T p⃗ + c(x⃗k) = 0.)
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