Numerical Optimization Unit 7: Constrained Optimization Problems

Che-Rung Lee

Scribe: 周宗毅

March 28, 2011

General formulation

$$egin{array}{lll} \min_{ec{x}} & f(ec{x}) \ ext{s.t.} & c_i(ec{x}) = 0, & i \in \mathcal{E} \ & c_i(ec{x}) \geq 0, & i \in \mathcal{I}. \end{array}$$

- \mathcal{E} is the index set for equality constraints; \mathcal{I} is the index set for inequality constraints.
- $\Omega = \{\vec{x} | c_i(\vec{x}) = 0, i \in \mathcal{E} \text{ and } c_j(\vec{x}) \ge 0, j \in \mathcal{I}\}$ is the set of feasible solutions.
- The function $f(\vec{x})$ and $c_i(\vec{x})$ can be linear or nonlinear.

(1)

$$\min_{x_1, x_2} f(x_1, x_2) = x_1 + x_2$$

s.t. $c(x_1, x_2) = x_1^2 + x_2^2 - 2 = 0$

- The optimal solution is at $\vec{x}^* = (x_1^*, x_2^*) = (-1, -1)$
- The gradient of c is $\nabla c = \begin{pmatrix} 2x_1 \\ 2x_2 \end{pmatrix}$, and $\nabla c(\vec{x}^*) = \begin{pmatrix} -2 \\ -2 \end{pmatrix}$ • The gradient of $\nabla f = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

• $f(\vec{x}^* + \vec{s}) \ge f(\vec{x}^*)$ for small enough \vec{s} . (why?)

$$f(\vec{x}^* + \vec{s}) = f(\vec{x}^*) + \nabla f(\vec{x}^*)^T \vec{s} + O(\|\vec{s}\|^2) \Rightarrow \nabla f(\vec{x}^*)^T \vec{s} \ge 0, \quad \forall \vec{s}, \|\vec{s}\| \le \epsilon$$

2 $\vec{c}(\vec{x}^*) = \vec{c}(\vec{x}^* + \vec{s}) = 0$ for small enough \vec{s} . (why?)

$$ec{c}(ec{x}^*+ec{s})pprox c(ec{x}^*)+
abla c(ec{x}^*)^{ au}ec{s}=0 \Rightarrow
abla c(ec{x}^*)^{ au}ec{s}=0, \hspace{1em} orall ec{s}, \|ec{s}\|\leq\epsilon$$

So From 1. and 2., we can infer that ∇f must be parallel to ∇c . (why?) If ∇f is not parallel to ∇c , there will be an \vec{s} that makes $\nabla f^T \vec{s} < 0$ and $\nabla c^T \vec{s} = 0$, as shown in the figure.

$$\min_{x_1, x_2} f(x_1, x_2) = x_1 + x_2$$

s.t. $c(\vec{x}) = 2 - x_1^2 - x_2^2 \ge 0$

What are the properties of the optimal solution in Example 2?

- If $f(\vec{x}^*)$ is inside the circle , then $\nabla f(\vec{x}^*) = 0$. (why?)
- 3 If $f(\vec{x}^*)$ is on the circle , then $c(\vec{x}^*) = 0$, which goes back to the equality constraint.
- Second From 1. and 2., we can conclude that ∇f(x*) = λ∇c(x*) for some scalar λ.
 - In the first case, $\lambda = 0$.
 - In the second case, λ is the scaling factor of $\nabla f(\vec{x}^*)$ and $\nabla c(\vec{x}^*)$.

The Lagrangian function

(

$$\mathcal{L}(\vec{x},\lambda) = f(\vec{x}) - \lambda c(\vec{x})$$

•
$$\nabla_{\vec{x}} \mathcal{L} = \frac{\partial \mathcal{L}}{\partial \vec{x}} = \nabla f(\vec{x}) - \lambda \nabla c(\vec{x}).$$

• $\nabla_{\lambda} \mathcal{L} = \frac{\partial \mathcal{L}}{\partial \lambda} = -c(\vec{x}).$

- Therefore, at the optimal solution , $\nabla \mathcal{L} = \begin{pmatrix} \nabla_{\vec{x}} \mathcal{L}(\vec{x}^*) \\ \nabla_{\lambda} \mathcal{L}(\vec{x}^*) \end{pmatrix} = 0.$
- If $c(\vec{x}^*)$ is inactive , $\lambda^* = 0$. \Rightarrow The complementarity condition $\lambda^* c(\vec{x}^*) = 0.$
- The scalar λ is called Lagrange multiplier.

$$\begin{split} \min_{x_1, x_2} & f(x_1, x_2) = x_1 + x_2 \\ \text{s.t.} & c_1(\vec{x}) = 2 - x_1^2 - x_2^2 \geq 0 \\ & c_2(\vec{x}) = x_2 \geq 0 \end{split}$$

•
$$\nabla c_1 = \begin{pmatrix} -2x_1 \\ -2x_2 \end{pmatrix}$$
, $\nabla c_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$, $\nabla f = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

• The optimal solution $\vec{x} = (-\sqrt{2}, 0)^T$, at which $\nabla c_1(\vec{x}^*) = \begin{pmatrix} 2\sqrt{2} \\ 0 \end{pmatrix}$.

• $\nabla f(\vec{x}^*)$ is a linear combination of $\nabla c_1(\vec{x}^*)$ and $\nabla c_2(\vec{x}^*)$.

• For this example, the Lagrangian

$$\mathcal{L}(\vec{x}, \vec{\lambda}) = f(\vec{x}) - \lambda_1 c_1(\vec{x}) - \lambda_2 c_2(\vec{x}), \text{ and}$$

$$\nabla \mathcal{L}(\vec{x}^*, \vec{\lambda}^*) = \begin{pmatrix} \nabla_{\vec{x}} \mathcal{L} \\ \nabla_{\lambda_1} \mathcal{L} \\ \nabla_{\lambda_2} \mathcal{L} \end{pmatrix} = \begin{pmatrix} \nabla f(\vec{x}^*) - c_1(\vec{x})/2\sqrt{2} - c_2(\vec{x}) \\ -c_1(\vec{x}^*) \\ -c_2(\vec{x}^*) \end{pmatrix} = \vec{0}.$$

- What is $\vec{\lambda}^*$?
- The examples suggests the first order necessity condition for constrained optimizations is the gradient of the Lagrangian is zero. But is it true?

$$\min_{x_1, x_2} \quad f(x_1, x_2) = x_1 + x_2 \\ \text{s.t.} \quad c_1(\vec{x}) = (x_1^2 + x_2^2 - 2)^2 = 0$$

•
$$\nabla f = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
 and $\nabla \vec{c}(\vec{x}) = \begin{pmatrix} 4(x_1^2 + x_2^2 - 2)x_1 \\ 4(x_1^2 + x_2^2 - 2)x_2 \end{pmatrix}$.

• Optimal solution is (-1, -1), but $\nabla c(-1, -1) = (0, 0)^T$ is not parallel to ∇f .

$$\begin{split} \min_{x_1,x_2} & f(x_1,x_2) = x_1 + x_2 \\ \text{s.t.} & c_1(\vec{x}) = 1 - x_1^2 - (x_2 - 1)^2 \geq 0 \\ & c_2(\vec{x}) = -x_2 \geq 0 \end{split}$$

•
$$\nabla c_1 = \begin{pmatrix} -2x_1 \\ -2(x_2 - 1) \end{pmatrix}$$
, $\nabla c_2 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$, and $\nabla f = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.
• The only solution is $(0,0)$. $\nabla c_1(0,0) = \begin{pmatrix} 0 \\ 2 \end{pmatrix}$,
 $\nabla c_2(0,0) = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$.

• At the optimal solution, ∇f is not a linear combination of ∇c_1 and ∇c_2 .

Regularity conditions: conditions of the constraints

Linear independence constraint qualifications (LICQ)

Given a point \vec{x} and its active set $\mathcal{A}(\vec{x})$, LICQ holds if the gradients of the constraints in $\mathcal{A}(\vec{x})$ are linearly independent.

KKT conditions

KKT conditions: the first order necessary condition for the COP

The KKT conditions(Karush-Kuhn-Tucker)

Suppose \vec{x}^* is a solution to the problem defined in (1), where f and c_i are continuously differentiable and the LICQ holds at \vec{x}^* . Then there exist a lagrangian multiplier vector $\vec{\lambda}^*$ s.t. the following conditions are satisfied at $(\vec{x}^*, \vec{\lambda}^*)$

- $c_i(\vec{x}^*) = 0 \quad \forall i \in \mathcal{E}$
- 3 $c_i(\vec{x}^*) \ge 0 \quad \forall i \in \mathcal{I}$
- $\lambda_i^* c_i(\vec{x}^*) \ge 0$ (Strict complementarity condition: either $\lambda_i^* = 0$ or $c_i(\vec{x}^*) = 0$.)
- S λ^{*}_i ≥ 0, ∀i ∈ 𝒯 (λ^{*}_i > 0, ∀i ∈ 𝒯 ∪ 𝔅^{*} if the strict complementarity condition holds.)

Two definitions for the proof of KKT

Tangent cone

A vector \vec{d} is said to be a *tangent* to a point set Ω at point \vec{x} if there are a sequence $\{\vec{z}_k\}$ and a sequence $\{t_k\}$, in which $t_k > 0$ and $\{t_k\}$ converges to 0, such that

$$\lim_{k\to\infty}\frac{\vec{z_k}-\vec{d}}{t_k}=\vec{d}.$$

The set of all tangents to Ω at \vec{x}^* is called the *tangent cone*.

The set of linearized feasible directions

Given a feasible point \vec{x} and the active constraint set $\mathcal{A}(\vec{x})$, the set of linearized feasible directions is defined as

$$\mathcal{F}(\vec{x}) = \left\{ \vec{d} \middle| \begin{array}{cc} \vec{d}^{T} \nabla c_{i}(\vec{x}) = 0 & \forall i \in \mathcal{E}, \\ \vec{d}^{T} \nabla c_{i}(\vec{x}) \geq 0 & \forall i \in \mathcal{A}(\vec{x}) \cap \mathcal{I} \end{array} \right\}$$

It can be shown that $\mathcal{F}(\vec{x})$ is a cone.

- $\forall \vec{d} \in \text{tangent cone at } \vec{x}^* \quad \vec{d}^T \nabla f \ge 0.$ (Using the idea of tangent cone to prove it)
- **2** Tangent cone at \vec{x}^* = feasible directions at \vec{x}^*

③ By 1 and 2 ,
$$ec{d}^{\, au}
abla f \geq 0$$
 for $orall ec{d} \in F(ec{x}^*)$

- By Farkas lemma , either one need be true.¹
 (a) $\exists \vec{d} \in \mathbb{R}^n$, $\vec{d}^T \nabla f < 0$, $B^T \vec{d} \ge 0$ $\vec{c}^T \vec{d} = 0$ (b) $\nabla f \in \{By + Cw | y \ge 0\}$
- Since (a) is not true (Because of 3), (b) must be true.

¹The proof of Farkas lemma can be found in last year's homework 4.

$$\begin{array}{ccc} \min_{x_1,x_2} & (x_1 - \frac{3}{2})^2 + (x_2 - \frac{1}{2})^4 \\ \text{s.t.} & c_1(\vec{x}) = 1 - x_1 - x_2 \ge 0 \\ & c_2(\vec{x}) = 1 - x_1 + x_2 \ge 0 \\ & c_3(\vec{x}) = 1 + x_1 - x_2 \ge 0 \\ & c_4(\vec{x}) = 1 + x_1 + x_2 \ge 0 \end{array}$$

$$\nabla c_1 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}, \nabla c_2 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}, \nabla c_3 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \nabla c_4 = \begin{pmatrix} 1 \\ 1 \end{pmatrix},$$
$$\vec{x}^* = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \text{ and } \nabla f(\vec{x}^*) = \begin{pmatrix} 2(x_1^* - \frac{3}{2}) \\ 4(x_2^* - \frac{1}{2})^3 \end{pmatrix} = 11 \begin{pmatrix} -1 \\ -1/2 \end{pmatrix}.$$
$$\vec{\lambda}^* = \begin{pmatrix} \frac{3}{4} & \frac{1}{4} & 0 & 0 \end{pmatrix}^T$$

The second order condition

- With constraints, we don't need to consider all the directions. The directions we only need to worried about are the "feasible directions".
- The critical cone $C(\vec{x}^*, \vec{\lambda}^*)$ is a set of directions defined at the optimal solution $(\vec{x}^*, \vec{\lambda}^*)$

$$\vec{w} \in \mathcal{C}(\vec{x}^*, \vec{\lambda}^*) \Leftrightarrow \begin{cases} \nabla c_i(\vec{x}^*)^T \vec{w} = 0 & \forall i \in \mathcal{E} \\ \nabla c_i(\vec{x}^*)^T \vec{w} = 0 & \forall i \in \mathcal{A}(\vec{x}^*) \cap \mathcal{I}, \ \lambda_i^* > 0 \\ \nabla c_i(\vec{x}^*)^T \vec{w} \ge 0 & \forall i \in \mathcal{A}(\vec{x}^*) \cap \mathcal{I}, \ \lambda_i^* = 0 \end{cases}$$

The second order necessary condition

Suppose \vec{x}^* is a local minimizer at which the LICQ holds, and $\vec{\lambda}^*$ is the Lagrange multiplier. Then $\vec{w}^T \nabla^2_{xx} \mathcal{L}(\vec{x}^*, \vec{\lambda}^*) \vec{w} \ge 0$, $\forall \vec{w} \in \mathcal{C}(\vec{x}^*, \vec{\lambda}^*)$.

Proof

We perform Taylor expansion at \vec{x}^* and evaluate its neighbor \vec{z} ,

$$\begin{split} \mathcal{L}(\vec{z},\vec{\lambda}^{*}) = & \mathcal{L}(\vec{x}^{*},\vec{\lambda}^{*}) + (\vec{z}-\vec{x}^{*})^{T} \nabla_{x} \mathcal{L}(\vec{x}^{*},\vec{\lambda}^{*}) \\ & + \frac{1}{2} (\vec{z}-\vec{x}^{*})^{T} \nabla_{xx}^{2} \mathcal{L}(\vec{x}^{*},\vec{\lambda}^{*}) (\vec{z}-\vec{x}^{*}) + O(\|\vec{z}-\vec{x}^{*}\|^{3}) \end{split}$$

Since $\mathcal{L}(\vec{x}^*, \vec{\lambda}^*) = f(\vec{x}^*)$ (why?) and $\nabla_x \mathcal{L}(\vec{x}^*, \vec{\lambda}^*) = 0$. Let $\vec{w} = \vec{z} - \vec{x}^*$, which is in the critical cone.

$$egin{aligned} \mathcal{L}(ec{z},ec{\lambda}^*) &= f(ec{z}) - \sum_{orall i} \lambda_i^* c_i(ec{z}) \ &= f(ec{z}) - \sum_{orall i} ec{\lambda}_i^* (c_i(ec{x}^*) +
abla c_i(ec{x}^*)^{ extsf{T}} ec{w}) = f(ec{z}) \end{aligned}$$

Thus, $f(\vec{z}) = \mathcal{L}(\vec{z}, \vec{\lambda}^*) = f(\vec{x}^*) + \frac{1}{2} \vec{w}^T \nabla^2_{xx} \mathcal{L}(\vec{x}^*, \vec{\lambda}^*) \vec{w} + O(||\vec{z} - \vec{x}^*||^3)$, which is larger than $f(\vec{x}^*)$ if $\vec{w}^T \nabla^2_{xx} \mathcal{L}(\vec{x}^*, \vec{\lambda}^*) \vec{w} \ge 0$.

Example

$$\min_{x_1,x_2} -0.1(x_1-4)^2 + x_2^2 \text{ s.t. } x_1^2 - x_2^2 - 1 \ge 0.$$

$$\mathcal{L}(\vec{x},\lambda) = -0.1(x_1 - 4)^2 + x_2^2 + \lambda(x_1^2 - x_2^2 - 1)$$

$$\nabla_x \mathcal{L} = \begin{pmatrix} -0.2(x_1 - 4) + 2\lambda x_1 \\ 2x_2 - 2\lambda x_2 \end{pmatrix}, \nabla_{xx} \mathcal{L} = \begin{pmatrix} -0.2 - 2\lambda_1 & 0 \\ 0 & 2 - 2\lambda \end{pmatrix}$$
at $\vec{x}^* = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ $\lambda^* = 0.3$ $\nabla C(\vec{x}^*) = \begin{pmatrix} 2 \\ 0 \end{pmatrix}$
The critical cone $\mathcal{C}(\vec{x}^*) = \left\{ \begin{pmatrix} 0 \\ w_2 \end{pmatrix} \middle| w_2 \in \mathbb{R} \right\}$

$$\nabla_{xx} \mathcal{L}(\vec{x}^*, \vec{\lambda}^*) = \begin{pmatrix} -0.4 & 0 \\ 0 & 1.4 \end{pmatrix}$$

$$\begin{pmatrix} 0 & w_2 \end{pmatrix} \begin{pmatrix} -0.4 & 0 \\ 0 & 1.4 \end{pmatrix} \begin{pmatrix} 0 \\ w_2 \end{pmatrix} = \begin{pmatrix} 0 & 1.4w_2 \end{pmatrix} \begin{pmatrix} 0 \\ w_2 \end{pmatrix} = 1.4w_2^2 > 0$$

Is there any easy way to check the condition?

• Let Z be a matrix whose column vectors span the subspace of $\mathcal{C}(\vec{x}^*, \vec{\lambda}^*)$

$$\Rightarrow \begin{cases} \forall \vec{w} \in \mathcal{C}(\vec{x}^*, \vec{\lambda}^*), & \exists \vec{u} \in \mathbb{R}^m \quad s.t. \ \vec{w} = Z \vec{u} \\ \forall \vec{u} \in \mathbb{R}^m, & Z \vec{u} \in \mathcal{C}(\vec{x}^*, \vec{\lambda}^*) \end{cases}$$

- To check $\vec{w}^T \nabla_{xx} \mathcal{L}^* \vec{w} \ge 0$, $\Leftrightarrow \vec{u}^T Z^T \nabla_{xx} \mathcal{L}^* Z \vec{u} \ge 0$ for all \vec{u} $\Leftrightarrow Z^T \nabla_{xx} \mathcal{L}^* Z$ is positive semidefinite.
- The matrix $Z^T \nabla_{xx} \mathcal{L}^* Z$ is called the *projected Hessian*.

• Let $A(\vec{x}^*)$ be the matrix whose rows are the gradient of the active constraints at the optimal solution \vec{x}^* .

$$A(\vec{x}^*)^T = [\nabla c_i(\vec{x}^*)]_{i \in \mathcal{A}(\vec{x}^*)}$$

• The critical cone $C(\vec{x}^*, \vec{\lambda}^*)$ is the null space of $A(\vec{x}^*)$

$$ec{w} \in \mathcal{C}(ec{x}^*, ec{\lambda}^*) \Leftrightarrow A(ec{x}^*) ec{w} = 0$$

We don't consider the case that λ* = 0 for active c_i. (Strict complementarity condition.)

Using QR factorization

$$A(\vec{x}^*)^T = Q \begin{bmatrix} R \\ 0 \end{bmatrix} = \begin{bmatrix} Q_1 & Q_2 \end{bmatrix} \begin{bmatrix} R_1 \\ 0 \end{bmatrix} = Q_1 R_1$$

 $A \in \mathbb{R}^{m \times n}, \ Q \in \mathbb{R}^{n \times n}, \ R \in \mathbb{R}^{m \times m}, \ Q_1 \in \mathbb{R}^{n \times m}, \ Q_2 \in \mathbb{R}^{n \times (n-m)}$

• The null space of A is spanned by Q₂, which means any vectors in the null space of A is a unique linearly combination of Q₂'s column vectors.

$$\vec{z} = Q_2 \vec{v} \qquad A \vec{z} = R^T Q_1^T Q_2 \vec{v} = 0$$

To check the second order condition is to check if $Q_2^T \nabla^2 \mathcal{L}^* Q_2$ is positive definite.

Consider the problem:
$$\min_{\vec{x} \in \mathbb{R}^n} f(\vec{x})$$
 subject to $c(\vec{x}) = \begin{pmatrix} c_1(\vec{x}) \\ c_2(\vec{x}) \\ \vdots \\ c_m(\vec{x}) \end{pmatrix} \ge 0$

Its Lagrangian function is

$$\mathcal{L}(\vec{x},\vec{\lambda})=f(\vec{x})-\vec{\lambda}^{T}c(\vec{x})$$

The dual problem is defined as

$$\max_{ec{\lambda} \in \mathbb{R}^n} q(ec{\lambda}) \hspace{0.1 in } ext{s.t.} \hspace{0.1 in } ec{\lambda} \geq 0$$

where $q(\vec{\lambda}) = \inf_{\vec{x}} \mathcal{L}(\vec{x}, \vec{\lambda}).$

- Infimum is the global minimum of L(·, λ), which may not be defined or difficult to compute.
- For f and $-c_i$ are convex, \mathcal{L} is also convex \Rightarrow the local minimizer is the global minimize.
- Wolfe's duality: another formulation of duality when function is differentiable.

$$\max \mathcal{L}(\vec{x}, \vec{\lambda})$$

s.t. $\nabla_{x} \mathcal{L}(\vec{x}, \vec{\lambda}) = 0, \ \lambda \ge 0$

$$\min_{(x_1 | x_2)} 0.5(x_1^2 + x_2^2) \quad s.t. | x_1 - 1 \ge 0$$

•
$$\mathcal{L}(X_1 \ X_2, \lambda) = 0.5(x_1^2 + x_2^2) - \lambda_1(x_1 - 1),$$

• $\nabla_x \mathcal{L} = \begin{pmatrix} x_1 - \lambda_1 \\ x_2 \end{pmatrix} = 0$, which implies $x_1 = \lambda_1$ and $x_2 = 0$.
• $q(\lambda) = \mathcal{L}(\lambda_1, 0, \lambda_1) = -0.5\lambda_1^2 + \lambda_1.$

$$\max_{\lambda_1 \geq 0} -0.5\lambda_1^2 + \lambda_1$$

Weak duality

Weak duality: For any
$$\vec{x}$$
 and $\vec{\lambda}$ feasible, $q(\vec{\lambda}) \leq f(\vec{x})$
 $q(\lambda) = \inf_{\vec{x}} (f(\vec{x}) - \vec{\lambda}^T c(\vec{x})) \leq f(\vec{x}) - \vec{\lambda}^T c(\vec{x}) \leq f(\vec{x})$

Example

$$\begin{split} \min_{\vec{x}} \vec{c}^T \vec{x} \quad s.t. \; A \vec{x} - \vec{b} \geq 0, \; \vec{x} \geq 0 \\ \mathcal{L}(\vec{x}, \vec{\lambda}) &= \vec{c}^T \vec{x} - \vec{\lambda}^T (A \vec{x} - \vec{b}) = (\vec{c}^T - \vec{\lambda}^T A) \vec{x} + \vec{b}^T \vec{\lambda} \\ \text{Since } \vec{x} \geq 0, \; \text{if } (\vec{c} - A^T \vec{\lambda})^T < 0, \; \inf_{\vec{x}} \mathcal{L} \to -\infty. \; \text{We require} \\ \vec{c}^T - A^T \lambda > 0. \end{split}$$

$$q(\vec{\lambda}) = \inf_{\vec{x}} \mathcal{L}(\vec{x},\vec{\lambda}) = \vec{b}^T \vec{\lambda}$$

The dual problem becomes

$$\max_{\lambda} \vec{b}^{T} \vec{\lambda} \qquad s.t. \quad A^{T} \vec{\lambda} \leq 0 \text{ and } \vec{\lambda} \geq 0.$$

The payoff matrix $A =$	you opp	Rock	Paper	Scissors
	Rock	0	1	-1
	Paper	-1	0	1
	Scissors	1	-1	0

• Suppose the opponent's strategy is
$$\vec{x} = \begin{pmatrix} 1/2 \\ 1/2 \\ 0 \end{pmatrix}$$
.

• What should your strategy be to maximize the payoff?

Problem formulation

• Let $\vec{y} = (y_1, y_2)^T$. We can express this problem as

$$\max_{\vec{y}} \vec{x}^{T} A \vec{y} = \max_{\vec{y}} \frac{-1}{2} y_1 + \frac{1}{2} y_2$$

Therefore, to maximize your wining chance, you should throw paper.On the other hand, the problem of your opponent is

$$\min_{\vec{x}} \vec{x}^T A \vec{y}$$

• What if you do not know your opponent's strategy? It becomes a min-max or max-min problem.

$$\max_{\vec{y}} \min_{\vec{x}} \vec{x}^T A \vec{y}$$

Two examples

Example

Consider the payoff matrix
$$A = \begin{pmatrix} -1 & 2 \\ 4 & 3 \end{pmatrix}$$
, and $\vec{x}, \vec{y} \in \{0, 1\}$.

•
$$\min_{i} \max_{j} a_{ij} = \min_{i} \left\{ \max_{j} a_{1,j}, \max_{j} a_{2,j} \right\} = \min\{2,4\} = 2.$$

•
$$\max_{j} \min_{i} a_{ij} = \max_{j} \left\{ \min_{i} a_{i,1}, \min_{i} a_{i,2} \right\} = \max\{-1,2\} = 2.$$

Example

Consider the payoff matrix
$$oldsymbol{A}=\left(egin{array}{cc} -1 & 2\ 4 & 1 \end{array}
ight)$$

•
$$\min_{i} \max_{j} a_{ij} = \min_{i} \left\{ \max_{j} a_{1,j}, \max_{j} a_{2,j} \right\} = \min\{2,4\} = 2.$$

• $\max_{i} \min_{j} a_{ij} = \max_{i} \left\{ \min_{j} a_{i,1}, \min_{i} a_{i,2} \right\} = \max\{-1,1\} = 1.$
(UNIT 7) Numerical Optimization March 28, 20

Strong duality theorem

 $\max_{\vec{y}} \min_{\vec{x}} F(\vec{x}, \vec{y}) = \min_{\vec{x}} \max_{\vec{y}} F(\vec{x}, \vec{y}) \text{ if and only if there exists a point}$ $(\vec{x}^*, \vec{y}^*) \text{ such that } F(\vec{x}^*, \vec{y}) \leq F(\vec{x}^*, \vec{y}^*) \leq F(\vec{x}, \vec{y}^*).$ • Point (\vec{x}^*, \vec{y}^*) is called a saddle point.