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Problem formulation

General formulation

o & is the index set for equality constraints; Z is the index set for
inequality constraints.

o Q= {X|ci(X)=0,i € &£ and ¢j(X) > 0,j € I} is the set of feasible
solutions.

@ The function f(X) and c¢;(X) can be linear or nonlinear.
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Example 1

min f(Xl,Xg) = X1 + X2
X1,X2

st. c(x1,x) = x¢ + x5 —2=0.

@ The optimal solution is at X* = (x{,x3) = (—1,—1)

@ The gradient of c is Vc = < 2x ) and V¢(x*) = ( =2 >
2xo -2

@ The gradient of Vf = ( i >

(UNIT 7) Numerical Optimization March 28, 2011 3/29



Properties of the optimal solution in Example 1

Q f(X*+5) > f(x*) for small enough 5. (why?)

F(X*+5) = F(X)+VF(E)T5+0(5]°) = VFA(X*)T5>0, V5 5] <e
@ ¢(x*) = c(X* +5) = 0 for small enough s. (why?)

ER 438~ c(X)+Ve(F)5=0=Vc(x*)T5=0, V5|5 <e

@ From 1. and 2., we can infer that Vf must be parallel to Vc. (why?)

If V£ is not parallel to V¢, there will be an §
that makes Vf'§ < 0 and Vc’§=0, as vz
shown in the figure. Ve
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Example 2

min f(Xl,Xg) = X1 + X2
X1,X2

st c(X)=2-—x2—x3>0

What are the properties of the optimal solution in Example 27
Q If £(X*) is inside the circle , then Vf(X*) = 0. (why?)
@ If f(X*) is on the circle , then ¢(X*) = 0, which goes back to the
equality constraint.
© From 1. and 2., we can conclude that V£ (X*) = AV¢(X*) for some
scalar A.

o In the first case, A = 0.
o In the second case, ) is the scaling factor of Vf(X*) and V¢(X*).
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Lagrangian function

The Lagrangian function

o ViL = ge = Vf(X) — A\Vc(X).
oL o
o VoL = I\ = —c(X).
. : o VL(XF) )
@ Therefore, at the optimal solution , VL = < VoL(7) ) =0.
o If ¢(X*) is inactive , \* = 0. = The complementarity condition
Nc(xX*)=0.
@ The scalar X\ is called Lagrange multiplier.
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Example 3

min f(Xl,Xg) = X1 + X2
X1,X2

st. aX)=2-x-x3>0

C2()?) = X2 Z 0

qu:(:gz >,Vc2:((1)),Vf:<i>.

@ The optimal solution X* = (—+/2,0)7, at which
Va(3) = ( 2\0/5 >

e Vf(X*) is a linear combination of V¢i(X*) and Ve (X*).
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Example 3

@ For this example, the Lagrangian
ﬁ()?, )\) = f()?) — )\1C1()_<') - )\2C2()?), and

. VL VI(x) — ca(X)/2v2 — () -
VLE X)) = VL | = —a (%) =0.
V)Q[, —CQ()?*)

o What is X*?

e The examples suggests the first order necessity condition for
constrained optimizations is the gradient of the Lagrangian is zero. But
is it true?
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Example 4

min f(x1, %) =x1 + x
X1,X2

st. a(X)=0¢+x3-2)?=0

o VFf— < ; ) and VE(3) = ( 404 +5 = 2 >

4(x2 + x5 — 2)x
e Optimal solution is (—1, —1), but V¢(—1,—1) = (0,0)" is not
parallel to Vf.
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Example 5

min f(Xl,Xz) = X1+ X0
X1,X2

s.t. C]_()_(‘):].—X%—(XQ—].)2 >0

CQ()_(‘) = —X2 Z 0

o V¢, = ( _2&2’&1) >,VC2: ( _01 ),and Vf = < 1 >

@ The only solution is (0,0). V¢1(0,0) = ( g )
V(0,0) = ( _01 )

@ At the optimal solution, Vf is not a linear combination of V¢; and
VCQ.
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Regularity conditions

Regularity conditions: conditions of the constraints

Linear independence constraint qualifications (LICQ)

Given a point X and its active set A(X), LICQ holds if the gradients
of the constraints in A(X) are linearly independent.
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KKT conditions

KKT conditions: the first order necessary condition for the COP

The KKT conditions(Karush-Kuhn-Tucker)

Suppose X* is a solution to the problem defined in (1), where f and ¢;
are continuously differentiable and th_g LICQ holds at X*. Then there
exist a lagrangian m_yltiplier vector A\* s.t. the following conditions
are satisfied at (X*, \*)

Vi L(X*, ) =0

¢i(x*)=0 Vieé&

¢(X*)>0 VieZ

Afci(X*) >0 (Strict complementarity condition: either A¥ =0
or ¢i(X*)=0.)

AP >0,VieI (A >0,VieZUA*"if the strict
complementarity condition holds.)

© 000

©
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Two definitions for the proof of KKT

A vector d is said to be a tangent to a point set  at point X if there are a
sequence {Zx} and a sequence {tx}, in which tx > 0 and {tx} converges

to 0, such that
lim =d.
k—oo Ty

The set of all tangents to 2 at X* is called the tangent cone.

The set of linearized feasible directions

Given a feasible point X and the active constraint set A(X), the set of
linearized feasible directions is defined as

)=0 Vie¢,
dTVe(X)>0 Vie AX)NT [

It can be shown that F(X) is a cone.
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Outline of the proof of the KKT conditions

Q vd e tangent cone at X* dTVf > 0. (Using the idea of tangent
cone to prove it)

@ Tangent cone at X* = feasible directions at X*

@ Byland2,d"Vf >0 forVd € F(3*)

© By Farkas lemma , either one need be true.!
(a) 3JdeR", d"VFf<0,B7d>0 &7d=0
(b) Vf e {By+ Cwl|y >0}

@ Since (a) is not true (Because of 3) , (b) must be true.

'The proof of Farkas lemma can be found in last year's homework 4.
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Example 6

MiNyy x (X1 —

s.t. c1(X) |
C2()?) ,
c3(X)

C4()_<') + X1 + X2 >0 Figure is fromMN&W's book

”
Loo)

(UNIT 7) Numerical Optimization March 28, 2011 15 /29



The second order condition

@ With constraints, we don’t need to consider all the directions. The
directions we only need to worried about are the "feasible directions”.

o The critical cone C(X*, X*) is a set of directions defined at the
optimal solution (X*, \*)

X T
weC(X M) e Ve(x)T
X T

The second order necessary condition

Suppose X* is a local minimizer at which the LICQ holds, and X* is the
Lagrange multiplier. Then w’ V2 L(%*, \)w >0, Vw € C(X*,\*).
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We perform Taylor expansion at X* and evaluate its neighbor Z,
L(Z,X) =L(Z5, X) + (Z = %) TV L(X*, XY)
1. o% ox VX[ oF > o
+5(Z-X )TVEL(RA)E = %) + 0|7 = 3*|1°)

Since £(X*, X*) = F(X*) (why?) and V,L(X*,X*) = 0. Let w = Z — X*,
which is in the critical cone.

L(Z,X) Z Nici(Z)
- Z X(ci(X) + V() Tw) = £(2)
Vi

Thus, f(Z) = L(Z,3*) = f(R*) + 3w V2, L(X

which is larger than f(X*) if WTV2 L(XF X)W >
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min —0.1(x; — 4)> + x3 s.t. x2 —x3 —1>0.

X1,X2

LX) =—0.1(x1 —4)? +x3 + A\ — x5 — 1)

1
. *0.2(X1 — 4) + 2Xxq —0. 2 —2)\1 O
Vk = < 2%, — 2\ > Vol = < 22\ )

o% 1 * __
wr=(1) xeos vew- (2
The critical cone C(X*) = { < )‘ Wy € R}
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Some easy way to check the condition

Is there any easy way to check the condition?
o Let Z be a matrix whose column vectors span the subspace of
C(X*, \")

—

vYw e (x5, N), JieR™ st.w=_Zi
Vi € R™, Zi € C(%*, X%)

o To check W/ Vo L*W >0, & 7 ZTV,oL*Zii > 0 for all i
& ZTV o L*Z is positive semidefinite.
o The matrix ZTV L*Z is called the projected Hessian.

(UNIT 7) Numerical Optimization March 28, 2011 19 /29



Active constraint matrix

o Let A(X*) be the matrix whose rows are the gradient of the active
constraints at the optimal solution X*.

AT = [Vai(Z)iear)
o The critical cone C(X*, X*) is the null space of A(X*)
W e C(X*,N) o AR )W =0

@ We don't consider the case that \* = 0 for active ¢;. (Strict
complementarity condition.)
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Compute the null space of A(X*)

@ Using QR factorization

A(?*)T:Q[g)]:[Ql Qz][lzl]z(?y‘ﬂ

Aec ]Rmxn7 Qc ]Rnxn7 R e ]Rmxm7 Q€ Rnxm, Q€ Rnx(nfm)

@ The null space of A is spanned by Q,, which means any vectors in the
null space of A is a unique linearly combination of Q>'s column
vectors.

Z=QvV AZ=RTQ/Qv=0
To check the second order condition is to check if Q] V2L*Q; is positive
definite.
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Cl(

)
c2(X)

Consider the problem: [n]iR? f(X) subject to ¢(X) = : >0
XeR" :

x| x|

cm(X)
Its Lagrangian function is

L(Z,X) = (%) = XT¢(R)
The dual problem is defined as

max g(X) st. X>0
AER"

where g(X) = infg £(X, X).
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@ Infimum is the global minimum of £(-, ), which may not be defined
or difficult to compute.

@ For f and —¢; are convex, L is also convex = the local minimizer is
the global minimize.

@ Wolfe's duality: another formulation of duality when function is
differentiable.
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Min(y, ) 0.5(x12 + xg) st.x3—1>0

) £(X1 Xz, /\) = 0.5(X12 + X22) — )\1(X1 — 1),

o V,.L = ( X1 ; A1 ) = 0, which implies x; = A\; and x = 0.
2
o g(\) = L£L(\1,0,A1) = —0.5)% + \;.
@ The dual problem is
max —0.5)\% + M
A1>0
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Weak duality

Weak duality: For any % and X feasible, g(X) (
g(\) = infz(F(X) — ATc(X)) < F(X) — AT ¢(X) < f(X)

minc’ % s.t.Ai’—BZO, X>0

|
LX) =2"=XT(Ax—b) =@ = XTAX+b"X

Since X > 0, if (€— ATX)T <0, infz £ — —oo. We require
cT—ATA>0.

g(X) = infL(X,X) = bT X

The dual problem becomes

mfx bTX s.t. ATX<0 and X > 0.
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The rock-paper-scissors game (two person zero sum game)

YoU T Rock Paper | Scissors
opp

The payoff matrix A = Rock 0 1 -1
Paper -1 0 1
Scissors 1 -1 0

1/2

@ Suppose the opponent’s strategy is X = | 1/2

0

@ What should your strategy be to maximize the payoff?
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Problem formulation

o Let ¥ = (y1,y2)". We can express this problem as

-1 1
max>_<'TA)7 =max—y; + =y
y y 2 2

Therefore, to maximize your wining chance, you should throw paper.

@ On the other hand, the problem of your opponent is

min <" Ay
X

@ What if you do not know your opponent'’s strategy? It becomes a
min-max or max-min problem.

maxmin X Ay
y X
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Two examples

1

Consider the payoff matrix A = ( _4 g ) and X,y € {0,1}.

@ minmaxa; = min {m_ax ai j, max agJ} =min{2,4} = 2.
i i J

@ maxmin aj = max {m_in aj 1, min 3;72} =max{—1,2} = 2.
j i j i i

Consider the payoff matrix A = ( -2 )

4 1

@ minmaxa; = min {max aij, max agJ} =min{2,4} = 2.
i i J

@ maxmina; = maxq minaji, minaj » = max{—1,1} = 1.
| |

|
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Strong duality theorem

Strong duality theorem

max min F(X,y) = min max F(X, y) if and only if there exists a point
y y

(X *,)7*) such that F(** y) < F(x*,y%) < F(X,y%).
e Point (X*,y™) is called a saddle point.

(UNIT 7) Numerical Optimization March 28, 2011 29 /29



	First order conditions (the KKT conditions)
	The second order condition
	Duality

