# Numerical Optimization <br> Unit 7：Constrained Optimization Problems 

## Che－Rung Lee

Scribe：周宗毅

March 28， 2011

## Problem formulation

## General formulation

$$
\begin{array}{ll}
\min _{\vec{x}} & f(\vec{x}) \\
\text { s.t. } & c_{i}(\vec{x})=0, \quad i \in \mathcal{E}  \tag{1}\\
& c_{i}(\vec{x}) \geq 0, \quad i \in \mathcal{I} .
\end{array}
$$

- $\mathcal{E}$ is the index set for equality constraints; $\mathcal{I}$ is the index set for inequality constraints.
- $\Omega=\left\{\vec{x} \mid c_{i}(\vec{x})=0, i \in \mathcal{E}\right.$ and $\left.c_{j}(\vec{x}) \geq 0, j \in \mathcal{I}\right\}$ is the set of feasible solutions.
- The function $f(\vec{x})$ and $c_{i}(\vec{x})$ can be linear or nonlinear.


## Example 1

## Example

$$
\begin{array}{ll} 
& \min _{x_{1}, x_{2}} f\left(x_{1}, x_{2}\right)=x_{1}+x_{2} \\
\text { s.t. } & c\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}-2=0 .
\end{array}
$$

- The optimal solution is at $\vec{x}^{*}=\left(x_{1}^{*}, x_{2}^{*}\right)=(-1,-1)$
- The gradient of $c$ is $\nabla c=\binom{2 x_{1}}{2 x_{2}}$, and $\nabla c\left(\vec{x}^{*}\right)=\binom{-2}{-2}$
- The gradient of $\nabla f=\binom{1}{1}$.


## Properties of the optimal solution in Example 1

(1) $f\left(\vec{x}^{*}+\vec{s}\right) \geq f\left(\vec{x}^{*}\right)$ for small enough $\vec{s}$. (why?)

$$
f\left(\vec{x}^{*}+\vec{s}\right)=f\left(\vec{x}^{*}\right)+\nabla f\left(\vec{x}^{*}\right)^{T} \vec{s}+O\left(\|\vec{s}\|^{2}\right) \Rightarrow \nabla f\left(\vec{x}^{*}\right)^{T} \vec{s} \geq 0, \quad \forall \vec{s},\|\vec{s}\| \leq \epsilon
$$

(2) $\vec{c}\left(\vec{x}^{*}\right)=\vec{c}\left(\vec{x}^{*}+\vec{s}\right)=0$ for small enough $\vec{s}$. (why?)

$$
\vec{c}\left(\vec{x}^{*}+\vec{s}\right) \approx c\left(\vec{x}^{*}\right)+\nabla c\left(\vec{x}^{*}\right)^{T} \vec{s}=0 \Rightarrow \nabla c\left(\vec{x}^{*}\right)^{T} \vec{s}=0, \quad \forall \vec{s},\|\vec{s}\| \leq \epsilon
$$

(3) From 1. and 2., we can infer that $\nabla f$ must be parallel to $\nabla c$. (why?) If $\nabla f$ is not parallel to $\nabla c$, there will be an $\vec{s}$ that makes $\nabla f^{T} \vec{s}<0$ and $\nabla c^{T} \vec{s}=0$, as shown in the figure.


## Example 2

## Example

$$
\begin{aligned}
& \min _{x_{1}, x_{2}} f\left(x_{1}, x_{2}\right)=x_{1}+x_{2} \\
& \text { s.t. } c(\vec{x})=2-x_{1}^{2}-x_{2}^{2} \geq 0
\end{aligned}
$$

What are the properties of the optimal solution in Example 2?
(1) If $f\left(\vec{x}^{*}\right)$ is inside the circle, then $\nabla f\left(\vec{x}^{*}\right)=0$. (why?)
(2) If $f\left(\vec{x}^{*}\right)$ is on the circle, then $c\left(\vec{x}^{*}\right)=0$, which goes back to the equality constraint.
(3) From 1. and 2., we can conclude that $\nabla f\left(\vec{x}^{*}\right)=\lambda \nabla c\left(\vec{x}^{*}\right)$ for some scalar $\lambda$.

- In the first case, $\lambda=0$.
- In the second case, $\lambda$ is the scaling factor of $\nabla f\left(\vec{x}^{*}\right)$ and $\nabla c\left(\vec{x}^{*}\right)$.


## Lagrangian function

## The Lagrangian function

$$
\begin{equation*}
\mathcal{L}(\vec{x}, \lambda)=f(\vec{x})-\lambda c(\vec{x}) \tag{2}
\end{equation*}
$$

- $\nabla_{\vec{x}} \mathcal{L}=\frac{\partial \mathcal{L}}{\partial \vec{x}}=\nabla f(\vec{x})-\lambda \nabla c(\vec{x})$.
- $\nabla_{\lambda} \mathcal{L}=\frac{\partial \mathcal{L}}{\partial \lambda}=-c(\vec{x})$.
- Therefore, at the optimal solution, $\nabla \mathcal{L}=\binom{\nabla_{\vec{x}} \mathcal{L}\left(\vec{x}^{*}\right)}{\nabla_{\lambda} \mathcal{L}\left(\vec{x}^{*}\right)}=0$.
- If $c\left(\vec{x}^{*}\right)$ is inactive , $\lambda^{*}=0 . \Rightarrow$ The complementarity condition $\lambda^{*} c\left(\vec{x}^{*}\right)=0$.
- The scalar $\lambda$ is called Lagrange multiplier.


## Example 3

## Example

$$
\begin{array}{cl}
\min _{x_{1}, x_{2}} & f\left(x_{1}, x_{2}\right)=x_{1}+x_{2} \\
\text { s.t. } & c_{1}(\vec{x})=2-x_{1}^{2}-x_{2}^{2} \geq 0 \\
& c_{2}(\vec{x})=x_{2} \geq 0
\end{array}
$$

- $\nabla c_{1}=\binom{-2 x_{1}}{-2 x_{2}}, \nabla c_{2}=\binom{0}{1}, \nabla f=\binom{1}{1}$.
- The optimal solution $\vec{x} *=(-\sqrt{2}, 0)^{T}$, at which $\nabla c_{1}\left(\vec{x}^{*}\right)=\binom{2 \sqrt{2}}{0}$.
- $\nabla f\left(\vec{x}^{*}\right)$ is a linear combination of $\nabla c_{1}\left(\vec{x}^{*}\right)$ and $\nabla c_{2}\left(\vec{x}^{*}\right)$.


## Example 3

- For this example, the Lagrangian

$$
\mathcal{L}(\vec{x}, \vec{\lambda})=f(\vec{x})-\lambda_{1} c_{1}(\vec{x})-\lambda_{2} c_{2}(\vec{x}), \text { and }
$$

$$
\nabla \mathcal{L}\left(\vec{x}^{*}, \vec{\lambda}^{*}\right)=\left(\begin{array}{c}
\nabla_{\vec{x}} \mathcal{L} \\
\nabla_{\lambda_{1}} \mathcal{L} \\
\nabla_{\lambda_{2}} \mathcal{L}
\end{array}\right)=\left(\begin{array}{c}
\nabla f\left(\vec{x}^{*}\right)-c_{1}(\vec{x}) / 2 \sqrt{2}-c_{2}(\vec{x}) \\
-c_{1}\left(\vec{x}^{*}\right) \\
-c_{2}\left(\vec{x}^{*}\right)
\end{array}\right)=\overrightarrow{0} .
$$

- What is $\vec{\lambda}^{*}$ ?
- The examples suggests the first order necessity condition for constrained optimizations is the gradient of the Lagrangian is zero. But is it true?


## Example 4

## Example

$$
\begin{array}{rl}
\min _{x_{1}, x_{2}} & f\left(x_{1}, x_{2}\right)=x_{1}+x_{2} \\
\text { s.t. } & c_{1}(\vec{x})=\left(x_{1}^{2}+x_{2}^{2}-2\right)^{2}=0
\end{array}
$$

- $\nabla f=\binom{1}{1}$ and $\nabla \vec{c}(\vec{x})=\binom{4\left(x_{1}^{2}+x_{2}^{2}-2\right) x_{1}}{4\left(x_{1}^{2}+x_{2}^{2}-2\right) x_{2}}$.
- Optimal solution is $(-1,-1)$, but $\nabla c(-1,-1)=(0,0)^{T}$ is not parallel to $\nabla f$.


## Example 5

## Example

$$
\begin{array}{cl}
\min _{x_{1}, x_{2}} & f\left(x_{1}, x_{2}\right)=x_{1}+x_{2} \\
\text { s.t. } & c_{1}(\vec{x})=1-x_{1}^{2}-\left(x_{2}-1\right)^{2} \geq 0 \\
& c_{2}(\vec{x})=-x_{2} \geq 0
\end{array}
$$

- $\nabla c_{1}=\binom{-2 x_{1}}{-2\left(x_{2}-1\right)}, \nabla c_{2}=\binom{0}{-1}$, and $\nabla f=\binom{1}{1}$.
- The only solution is $(0,0) . \nabla c_{1}(0,0)=\binom{0}{2}$, $\nabla c_{2}(0,0)=\binom{0}{-1}$.
- At the optimal solution, $\nabla f$ is not a linear combination of $\nabla c_{1}$ and $\nabla c_{2}$.


## Regularity conditions

Regularity conditions: conditions of the constraints

## Linear independence constraint qualifications (LICQ)

Given a point $\vec{x}$ and its active set $\mathcal{A}(\vec{x})$, LICQ holds if the gradients of the constraints in $\mathcal{A}(\vec{x})$ are linearly independent.

## KKT conditions

KKT conditions: the first order necessary condition for the COP

## The KKT conditions(Karush-Kuhn-Tucker)

Suppose $\vec{x}^{*}$ is a solution to the problem defined in (1), where $f$ and $c_{i}$ are continuously differentiable and the LICQ holds at $\vec{x}^{*}$. Then there exist a lagrangian multiplier vector $\vec{\lambda}^{*}$ s.t. the following conditions are satisfied at $\left(\vec{x}^{*}, \vec{\lambda}^{*}\right)$
(1) $\nabla_{\vec{x}^{*}} \mathcal{L}\left(\vec{x}^{*}, \vec{\lambda}^{*}\right)=0$
(2) $c_{i}\left(\vec{x}^{*}\right)=0 \quad \forall i \in \mathcal{E}$
(3) $c_{i}\left(\vec{x}^{*}\right) \geq 0 \quad \forall i \in \mathcal{I}$
(9) $\lambda_{i}^{*} c_{i}\left(\vec{x}^{*}\right) \geq 0$ (Strict complementarity condition: either $\lambda_{i}^{*}=0$ or $c_{i}\left(\vec{x}^{*}\right)=0$.)
(6) $\lambda_{i}^{*} \geq 0, \forall i \in \mathcal{I}\left(\lambda_{i}^{*}>0, \forall i \in \mathcal{I} \cup \mathcal{A}^{*}\right.$ if the strict complementarity condition holds.)

## Two definitions for the proof of KKT

## Tangent cone

A vector $\vec{d}$ is said to be a tangent to a point set $\Omega$ at point $\vec{x}$ if there are a sequence $\left\{\vec{z}_{k}\right\}$ and a sequence $\left\{t_{k}\right\}$, in which $t_{k}>0$ and $\left\{t_{k}\right\}$ converges to 0 , such that

$$
\lim _{k \rightarrow \infty} \frac{\overrightarrow{z_{k}}-\vec{d}}{t_{k}}=\vec{d}
$$

The set of all tangents to $\Omega$ at $\vec{x}^{*}$ is called the tangent cone.

## The set of linearized feasible directions

Given a feasible point $\vec{x}$ and the active constraint set $\mathcal{A}(\vec{x})$, the set of linearized feasible directions is defined as

$$
\mathcal{F}(\vec{x})=\left\{\begin{array}{l|l}
\vec{d} & \begin{array}{l}
\vec{d}^{T} \nabla c_{i}(\vec{x})=0 \quad \forall i \in \mathcal{E}, \\
\vec{d}^{T} \nabla c_{i}(\vec{x}) \geq 0
\end{array} \quad \forall i \in \mathcal{A}(\vec{x}) \cap \mathcal{I}
\end{array}\right\} .
$$

It can be shown that $\mathcal{F}(\vec{x})$ is a cone.

## Outline of the proof of the KKT conditions

(1) $\forall \vec{d} \in$ tangent cone at $\vec{x}^{*} \vec{d}^{T} \nabla f \geq 0$. (Using the idea of tangent cone to prove it)
(2) Tangent cone at $\vec{x}^{*}=$ feasible directions at $\vec{x}^{*}$
(3) By 1 and $2, \vec{d}^{T} \nabla f \geq 0$ for $\forall \vec{d} \in F\left(\vec{x}^{*}\right)$
(9) By Farkas lemma, either one need be true. ${ }^{1}$
(a) $\exists \vec{d} \in \mathbb{R}^{n}, \vec{d}^{T} \nabla f<0, B^{T} \vec{d} \geq 0 \quad \vec{c}^{T} \vec{d}=0$
(b) $\nabla f \in\{B y+C w \mid y \geq 0\}$
(6) Since (a) is not true (Because of 3), (b) must be true.

[^0]
## Example 6

## Example

$$
\begin{array}{cc}
\min _{x_{1}, x_{2}} & \left(x_{1}-\frac{3}{2}\right)^{2}+\left(x_{2}-\frac{1}{2}\right)^{4} \\
\mathrm{s.t.} & c_{1}(\vec{x})=1-x_{1}-x_{2} \geq 0 \\
& c_{2}(\vec{x})=1-x_{1}+x_{2} \geq 0 \\
& c_{3}(\vec{x})=1+x_{1}-x_{2} \geq 0 \\
& c_{4}(\vec{x})=1+x_{1}+x_{2} \geq 0
\end{array}
$$


$\nabla c_{1}=\binom{-1}{-1}, \nabla c_{2}=\binom{-1}{1}, \nabla c_{3}=\binom{1}{-1}, \nabla c_{4}=\binom{1}{1}$.
$\vec{x}^{*}=\binom{1}{0}$, and $\nabla f\left(\vec{x}^{*}\right)=\binom{2\left(x_{1}^{*}-\frac{3}{2}\right)}{4\left(x_{2}^{*}-\frac{1}{2}\right)^{3}}=11\binom{-1}{-1 / 2}$.
$\vec{\lambda}^{*}=\left(\begin{array}{cccc}\frac{3}{4} & \frac{1}{4} & 0 & 0\end{array}\right)^{T}$

## The second order condition

- With constraints, we don't need to consider all the directions. The directions we only need to worried about are the "feasible directions".
- The critical cone $\mathcal{C}\left(\vec{x}^{*}, \vec{\lambda}^{*}\right)$ is a set of directions defined at the optimal solution ( $\vec{x}^{*}, \vec{\lambda}^{*}$ )

$$
\vec{w} \in \mathcal{C}\left(\vec{x}^{*}, \vec{\lambda}^{*}\right) \Leftrightarrow \begin{cases}\nabla c_{i}\left(\vec{x}^{*}\right)^{T} \vec{w}=0 & \forall i \in \mathcal{E} \\ \nabla c_{i}\left(\vec{x}^{*}\right)^{T} \vec{w}=0 & \forall i \in \mathcal{A}\left(\vec{x}^{*}\right) \cap \mathcal{I}, \lambda_{i}^{*}>0 \\ \nabla c_{i}\left(\vec{x}^{*}\right)^{T} \vec{w} \geq 0 & \forall i \in \mathcal{A}\left(\vec{x}^{*}\right) \cap \mathcal{I}, \lambda_{i}^{*}=0\end{cases}
$$

## The second order necessary condition

Suppose $\vec{x}^{*}$ is a local minimizer at which the LICQ holds, and $\vec{\lambda}^{*}$ is the Lagrange multiplier. Then $\vec{w}^{T} \nabla_{x x}^{2} \mathcal{L}\left(\vec{x}^{*}, \vec{\lambda}^{*}\right) \vec{w} \geq 0, \quad \forall \vec{w} \in \mathcal{C}\left(\vec{x}^{*}, \vec{\lambda}^{*}\right)$.

## Proof

We perform Taylor expansion at $\vec{x}^{*}$ and evaluate its neighbor $\vec{z}$,

$$
\begin{aligned}
\mathcal{L}\left(\vec{z}, \vec{\lambda}^{*}\right)= & \mathcal{L}\left(\vec{x}^{*}, \vec{\lambda}^{*}\right)+\left(\vec{z}-\vec{x}^{*}\right)^{T} \nabla_{x} \mathcal{L}\left(\vec{x}^{*}, \vec{\lambda}^{*}\right) \\
& +\frac{1}{2}\left(\vec{z}-\vec{x}^{*}\right)^{T} \nabla_{x x}^{2} \mathcal{L}\left(\vec{x}^{*}, \vec{\lambda}^{*}\right)\left(\vec{z}-\vec{x}^{*}\right)+O\left(\left\|\vec{z}-\vec{x}^{*}\right\|^{3}\right)
\end{aligned}
$$

Since $\mathcal{L}\left(\vec{x}^{*}, \vec{\lambda}^{*}\right)=f\left(\vec{x}^{*}\right)$ (why?) and $\nabla_{x} \mathcal{L}\left(\vec{x}^{*}, \vec{\lambda}^{*}\right)=0$. Let $\vec{w}=\vec{z}-\vec{x}^{*}$, which is in the critical cone.

$$
\begin{aligned}
\mathcal{L}\left(\vec{z}, \vec{\lambda}^{*}\right) & =f(\vec{z})-\sum_{\forall i} \lambda_{i}^{*} c_{i}(\vec{z}) \\
& =f(\vec{z})-\sum_{\forall i} \vec{\lambda}_{i}^{*}\left(c_{i}\left(\vec{x}^{*}\right)+\nabla c_{i}\left(\vec{x}^{*}\right)^{T} \vec{w}\right)=f(\vec{z})
\end{aligned}
$$

Thus, $f(\vec{z})=\mathcal{L}\left(\vec{z}, \vec{\lambda}^{*}\right)=f\left(\vec{x}^{*}\right)+\frac{1}{2} \vec{w}^{T} \nabla_{x x}^{2} \mathcal{L}\left(\vec{x}^{*}, \vec{\lambda}^{*}\right) \vec{w}+O\left(\left\|\vec{z}-\vec{x}^{*}\right\|^{3}\right)$, which is larger than $f\left(\vec{x}^{*}\right)$ if $\vec{w}^{T} \nabla_{x x}^{2} \mathcal{L}\left(\vec{x}^{*}, \vec{\lambda}^{*}\right) \vec{w} \geq 0$.

## Example

## Example

$$
\min _{x_{1}, x_{2}}-0.1\left(x_{1}-4\right)^{2}+x_{2}^{2} \text { s.t. } x_{1}^{2}-x_{2}^{2}-1 \geq 0
$$

$\mathcal{L}(\vec{x}, \lambda)=-0.1\left(x_{1}-4\right)^{2}+x_{2}^{2}+\lambda\left(x_{1}^{2}-x_{2}^{2}-1\right)$
$\nabla_{x} \mathcal{L}=\binom{-0.2\left(x_{1}-4\right)+2 \lambda x_{1}}{2 x_{2}-2 \lambda x_{2}}, \nabla_{x x} \mathcal{L}=\left(\begin{array}{cl}-0.2-2 \lambda_{1} & 0 \\ 0 & 2-2 \lambda\end{array}\right)$
at $\vec{x}^{*}=\binom{1}{0} \quad \lambda^{*}=0.3 \quad \nabla C\left(\vec{x}^{*}\right)=\binom{2}{0}$
The critical cone $\mathcal{C}\left(\vec{x}^{*}\right)=\left\{\left.\binom{0}{w_{2}} \right\rvert\, w_{2} \in \mathbb{R}\right\}$
$\nabla_{x x} \mathcal{L}\left(\vec{x}^{*}, \vec{\lambda}^{*}\right)=\left(\begin{array}{cl}-0.4 & 0 \\ 0 & 1.4\end{array}\right)$
$\left(\begin{array}{ll}0 & w_{2}\end{array}\right)\left(\begin{array}{cc}-0.4 & 0 \\ 0 & 1.4\end{array}\right)\binom{0}{w_{2}}=\left(\begin{array}{ll}0 & 1.4 w_{2}\end{array}\right)\binom{0}{w_{2}}=1.4 w_{2}^{2}>0$

## Some easy way to check the condition

Is there any easy way to check the condition?

- Let $Z$ be a matrix whose column vectors span the subspace of $\mathcal{C}\left(\vec{x}^{*}, \vec{\lambda}^{*}\right)$

$$
\Rightarrow \begin{cases}\forall \vec{w} \in \mathcal{C}\left(\vec{x}^{*}, \vec{\lambda}^{*}\right), & \exists \vec{u} \in \mathbb{R}^{m} \text { s.t. } \vec{w}=Z \vec{u} \\ \forall \vec{u} \in \mathbb{R}^{m}, & Z \vec{u} \in \mathcal{C}\left(\vec{x}^{*}, \vec{\lambda}^{*}\right)\end{cases}
$$

- To check $\vec{w}^{T} \nabla_{x x} \mathcal{L}^{*} \vec{w} \geq 0, \Leftrightarrow \vec{u}^{T} Z^{T} \nabla_{x x} \mathcal{L}^{*} Z \vec{u} \geq 0$ for all $\vec{u}$ $\Leftrightarrow Z^{T} \nabla_{x x} \mathcal{L}^{*} Z$ is positive semidefinite.
- The matrix $Z^{T} \nabla_{x x} \mathcal{L}^{*} Z$ is called the projected Hessian.


## Active constraint matrix

- Let $A\left(\vec{x}^{*}\right)$ be the matrix whose rows are the gradient of the active constraints at the optimal solution $\vec{x}^{*}$.

$$
A\left(\vec{x}^{*}\right)^{T}=\left[\nabla c_{i}\left(\vec{x}^{*}\right)\right]_{i \in \mathcal{A}\left(\vec{x}^{*}\right)}
$$

- The critical cone $\mathcal{C}\left(\vec{x}^{*}, \vec{\lambda}^{*}\right)$ is the null space of $A\left(\vec{x}^{*}\right)$

$$
\vec{w} \in \mathcal{C}\left(\vec{x}^{*}, \vec{\lambda}^{*}\right) \Leftrightarrow A\left(\vec{x}^{*}\right) \vec{w}=0
$$

- We don't consider the case that $\lambda^{*}=0$ for active $c_{i}$. (Strict complementarity condition.)


## Compute the null space of $A\left(\vec{x}^{*}\right)$

- Using QR factorization

$$
A\left(\vec{x}^{*}\right)^{T}=Q\left[\begin{array}{l}
R \\
0
\end{array}\right]=\left[\begin{array}{ll}
Q_{1} & Q_{2}
\end{array}\right]\left[\begin{array}{c}
R_{1} \\
0
\end{array}\right]=Q_{1} R_{1}
$$

$A \in \mathbb{R}^{m \times n}, Q \in \mathbb{R}^{n \times n}, R \in \mathbb{R}^{m \times m}, Q_{1} \in \mathbb{R}^{n \times m}, Q_{2} \in \mathbb{R}^{n \times(n-m)}$

- The null space of $A$ is spanned by $Q_{2}$, which means any vectors in the null space of $A$ is a unique linearly combination of $Q_{2}$ 's column vectors.

$$
\vec{z}=Q_{2} \vec{v} \quad A \vec{z}=R^{T} Q_{1}^{T} Q_{2} \vec{v}=0
$$

To check the second order condition is to check if $Q_{2}^{T} \nabla^{2} \mathcal{L}^{*} Q_{2}$ is positive definite.

## Duality

Consider the problem: $\min _{\vec{x} \in \mathbb{R}^{n}} f(\vec{x})$ subject to $c(\vec{x})=\left(\begin{array}{c}c_{1}(\vec{x}) \\ c_{2}(\vec{x}) \\ \vdots \\ c_{m}(\vec{x})\end{array}\right) \geq 0$
Its Lagrangian function is

$$
\mathcal{L}(\vec{x}, \vec{\lambda})=f(\vec{x})-\vec{\lambda}^{T} c(\vec{x})
$$

The dual problem is defined as

$$
\max _{\vec{\lambda} \in \mathbb{R}^{n}} q(\vec{\lambda}) \quad \text { s.t. } \quad \vec{\lambda} \geq 0
$$

where $q(\vec{\lambda})=\inf _{\vec{x}} \mathcal{L}(\vec{x}, \vec{\lambda})$.

## Duality

- Infimum is the global minimum of $\mathcal{L}(\cdot, \lambda)$, which may not be defined or difficult to compute.
- For $f$ and $-c_{i}$ are convex, $\mathcal{L}$ is also convex $\Rightarrow$ the local minimizer is the global minimize.
- Wolfe's duality: another formulation of duality when function is differentiable.

$$
\begin{aligned}
& \max \mathcal{L}(\vec{x}, \vec{\lambda}) \\
& \text { s.t. } \nabla_{\times} \mathcal{L}(\vec{x}, \vec{\lambda})=0, \lambda \geq 0
\end{aligned}
$$

## Example

## Example

 $\min _{\left(x_{1} x_{2}\right)} 0.5\left(x_{1}^{2}+x_{2}^{2}\right) \quad$ s.t. $x_{1}-1 \geq 0$- $\mathcal{L}\left(X_{1} X_{2}, \lambda\right)=0.5\left(x_{1}^{2}+x_{2}^{2}\right)-\lambda_{1}\left(x_{1}-1\right)$,
- $\nabla_{x} \mathcal{L}=\binom{x_{1}-\lambda_{1}}{x_{2}}=0$, which implies $x_{1}=\lambda_{1}$ and $x_{2}=0$.
- $q(\lambda)=\mathcal{L}\left(\lambda_{1}, 0, \lambda_{1}\right)=-0.5 \lambda_{1}^{2}+\lambda_{1}$.
- The dual problem is

$$
\max _{\lambda_{1} \geq 0}-0.5 \lambda_{1}^{2}+\lambda_{1}
$$

## Weak duality

Weak duality: For any $\vec{x}$ and $\vec{\lambda}$ feasible, $q(\vec{\lambda}) \leq f(\vec{x})$
$q(\lambda)=\inf _{\vec{x}}\left(f(\vec{x})-\vec{\lambda}^{T} c(\vec{x})\right) \leq f(\vec{x})-\vec{\lambda}^{T} c(\vec{x}) \leq f(\vec{x})$

## Example

$$
\begin{gathered}
\min _{\vec{x}} \vec{c}^{T} \vec{x} \quad \text { s.t. } A \vec{x}-\vec{b} \geq 0, \vec{x} \geq 0 \\
\mathcal{L}(\vec{x}, \vec{\lambda})=\vec{c}^{T} \vec{x}-\vec{\lambda}^{T}(A \vec{x}-\vec{b})=\left(\vec{c}^{T}-\vec{\lambda}^{T} A\right) \vec{x}+\vec{b}^{T} \vec{\lambda}
\end{gathered}
$$

Since $\vec{x} \geq 0$, if $\left(\vec{c}-A^{T} \vec{\lambda}\right)^{T}<0, \inf _{\vec{x}} \mathcal{L} \rightarrow-\infty$. We require $\vec{c}^{T}-A^{T} \lambda>0$.

$$
q(\vec{\lambda})=\inf _{\vec{x}} \mathcal{L}(\vec{x}, \vec{\lambda})=\vec{b}^{T} \vec{\lambda}
$$

The dual problem becomes

$$
\max _{\lambda} \vec{b}^{T} \vec{\lambda} \quad \text { s.t. } \quad A^{T} \vec{\lambda} \leq 0 \text { and } \vec{\lambda} \geq 0 .
$$

## The rock-paper-scissors game (two person zero sum game)



- What should your strategy be to maximize the payoff?


## Problem formulation

- Let $\vec{y}=\left(y_{1}, y_{2}\right)^{T}$. We can express this problem as

$$
\max _{\vec{y}} \vec{x}^{T} A \vec{y}=\max _{\vec{y}} \frac{-1}{2} y_{1}+\frac{1}{2} y_{2}
$$

Therefore, to maximize your wining chance, you should throw paper.

- On the other hand, the problem of your opponent is

$$
\min _{\vec{x}} \vec{x}^{T} A \vec{y}
$$

- What if you do not know your opponent's strategy? It becomes a min-max or max-min problem.

$$
\max _{\vec{y}} \min _{\vec{x}} \vec{x}^{T} A \vec{y}
$$

## Two examples

## Example

Consider the payoff matrix $A=\left(\begin{array}{cc}-1 & 2 \\ 4 & 3\end{array}\right)$, and $\vec{x}, \vec{y} \in\{0,1\}$.

- $\min _{i} \max _{j} a_{i j}=\min _{i}\left\{\max _{j} a_{1, j}, \max _{j} a_{2, j}\right\}=\min \{2,4\}=2$.
- $\max _{j} \min _{i} a_{i j}=\max _{j}\left\{\min _{i} a_{i, 1}, \min _{i} a_{i, 2}\right\}=\max \{-1,2\}=2$.


## Example

Consider the payoff matrix $A=\left(\begin{array}{cc}-1 & 2 \\ 4 & 1\end{array}\right)$

- $\min _{i} \max _{j} a_{i j}=\min _{i}\left\{\max _{j} a_{1, j}, \max _{j} a_{2, j}\right\}=\min \{2,4\}=2$.
- $\max _{i} \min _{i} a_{i j}=\max _{i}\left\{\min _{i} a_{i, 1}, \min _{i} a_{i, 2}\right\}=\max \{-1,1\}=1$.


## Strong duality theorem

## Strong duality theorem

$\max _{\vec{y}} \min _{\vec{x}} F(\vec{x}, \vec{y})=\min _{\vec{x}} \max _{\vec{y}} F(\vec{x}, \vec{y})$ if and only if there exists a point $\left(\vec{x}^{*}, \vec{y}^{*}\right)$ such that $F\left(\vec{x}^{*}, \vec{y}\right) \leq F\left(\vec{x}^{*}, \vec{y}^{*}\right) \leq F\left(\vec{x}, \vec{y}^{*}\right)$.

- Point $\left(\vec{x}^{*}, \vec{y}^{*}\right)$ is called a saddle point.


[^0]:    ${ }^{1}$ The proof of Farkas lemma can be found in last year's homework 4.

