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Problem formulation

General formulation

min
x⃗

f (x⃗)

s.t. ci (x⃗) = 0, i ∈ ℰ
ci (x⃗) ≥ 0, i ∈ ℐ.

(1)

ℰ is the index set for equality constraints; ℐ is the index set for
inequality constraints.

Ω = {x⃗ ∣ci (x⃗) = 0, i ∈ ℰ and cj(x⃗) ≥ 0, j ∈ ℐ} is the set of feasible
solutions.

The function f (x⃗) and ci (x⃗) can be linear or nonlinear.
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Example 1

Example

min
x1,x2

f (x1, x2) = x1 + x2

s.t. c(x1, x2) = x21 + x22 − 2 = 0.

The optimal solution is at x⃗∗ = (x∗1 , x
∗
2 ) = (−1,−1)

The gradient of c is ∇c =

(
2x1
2x2

)
, and ∇c(x⃗∗) =

(
−2
−2

)
The gradient of ∇f =

(
1
1

)
.
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Properties of the optimal solution in Example 1

1 f (x⃗∗ + s⃗) ≥ f (x⃗∗) for small enough s⃗. (why?)

f (x⃗∗+s⃗) = f (x⃗∗)+∇f (x⃗∗)T s⃗+O(∥⃗s∥2)⇒ ∇f (x⃗∗)T s⃗ ≥ 0, ∀⃗s, ∥⃗s∥ ≤ �

2 c⃗(x⃗∗) = c⃗(x⃗∗ + s⃗) = 0 for small enough s⃗. (why?)

c⃗(x⃗∗ + s⃗) ≈ c(x⃗∗) +∇c(x⃗∗)T s⃗ = 0⇒ ∇c(x⃗∗)T s⃗ = 0, ∀⃗s, ∥⃗s∥ ≤ �

3 From 1. and 2., we can infer that ∇f must be parallel to ∇c . (why?)

If ∇f is not parallel to ∇c , there will be an s⃗
that makes ∇f T s⃗ < 0 and ∇cT s⃗ = 0, as
shown in the figure.
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Example 2

Example

min
x1,x2

f (x1, x2) = x1 + x2

s.t. c(x⃗) = 2− x21 − x22 ≥ 0

What are the properties of the optimal solution in Example 2?

1 If f (x⃗∗) is inside the circle , then ∇f (x⃗∗) = 0. (why?)

2 If f (x⃗∗) is on the circle , then c(x⃗∗) = 0, which goes back to the
equality constraint.

3 From 1. and 2., we can conclude that ∇f (x⃗∗) = �∇c(x⃗∗) for some
scalar �.

In the first case, � = 0.
In the second case, � is the scaling factor of ∇f (x⃗∗) and ∇c(x⃗∗).
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Lagrangian function

The Lagrangian function

ℒ(x⃗ , �) = f (x⃗)− �c(x⃗) (2)

∇x⃗ℒ =
∂ℒ
∂x⃗

= ∇f (x⃗)− �∇c(x⃗).

∇�ℒ =
∂ℒ
∂�

= −c(x⃗).

Therefore, at the optimal solution , ∇ℒ =

(
∇x⃗ℒ(x⃗∗)
∇�ℒ(x⃗∗)

)
= 0.

If c(x⃗∗) is inactive , �∗ = 0.⇒ The complementarity condition
�∗c(x⃗∗) = 0.

The scalar � is called Lagrange multiplier.
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Example 3

Example

min
x1,x2

f (x1, x2) = x1 + x2

s.t. c1(x⃗) = 2− x21 − x22 ≥ 0

c2(x⃗) = x2 ≥ 0

∇c1 =

(
−2x1
−2x2

)
, ∇c2 =

(
0
1

)
, ∇f =

(
1
1

)
.

The optimal solution x⃗∗ = (−
√

2, 0)T , at which

∇c1(x⃗∗) =

(
2
√

2
0

)
.

∇f (x⃗∗) is a linear combination of ∇c1(x⃗∗) and ∇c2(x⃗∗).
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Example 3

For this example, the Lagrangian
ℒ(x⃗ , �⃗) = f (x⃗)− �1c1(x⃗)− �2c2(x⃗), and

∇ℒ(x⃗∗, �⃗∗) =

⎛⎝ ∇x⃗ℒ
∇�1ℒ
∇�2ℒ

⎞⎠ =

⎛⎝ ∇f (x⃗∗)− c1(x⃗)/2
√

2− c2(x⃗)
−c1(x⃗∗)
−c2(x⃗∗)

⎞⎠ = 0⃗.

What is �⃗∗?
The examples suggests the first order necessity condition for
constrained optimizations is the gradient of the Lagrangian is zero. But
is it true?
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Example 4

Example

min
x1,x2

f (x1, x2) = x1 + x2

s.t. c1(x⃗) = (x21 + x22 − 2)2 = 0

∇f =

(
1
1

)
and ∇c⃗(x⃗) =

(
4(x21 + x22 − 2)x1
4(x21 + x22 − 2)x2

)
.

Optimal solution is (−1,−1), but ∇c(−1,−1) = (0, 0)T is not
parallel to ∇f .
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Example 5

Example

min
x1,x2

f (x1, x2) = x1 + x2

s.t. c1(x⃗) = 1− x21 − (x2 − 1)2 ≥ 0

c2(x⃗) = −x2 ≥ 0

∇c1 =

(
−2x1

−2(x2 − 1)

)
, ∇c2 =

(
0
−1

)
, and ∇f =

(
1
1

)
.

The only solution is (0, 0). ∇c1(0, 0) =

(
0
2

)
,

∇c2(0, 0) =

(
0
−1

)
.

At the optimal solution, ∇f is not a linear combination of ∇c1 and
∇c2.
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Regularity conditions

Regularity conditions: conditions of the constraints

Linear independence constraint qualifications (LICQ)

Given a point x⃗ and its active set A(x⃗), LICQ holds if the gradients
of the constraints in A(x⃗) are linearly independent.
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KKT conditions

KKT conditions: the first order necessary condition for the COP

The KKT conditions(Karush-Kuhn-Tucker)

Suppose x⃗∗ is a solution to the problem defined in (1), where f and ci
are continuously differentiable and the LICQ holds at x⃗∗. Then there
exist a lagrangian multiplier vector �⃗∗ s.t. the following conditions
are satisfied at (x⃗∗, �⃗∗)

1 ∇x⃗∗ℒ(x⃗∗, �⃗∗) = 0

2 ci (x⃗
∗) = 0 ∀i ∈ ℰ

3 ci (x⃗
∗) ≥ 0 ∀i ∈ ℐ

4 �∗i ci (x⃗
∗)≥0 (Strict complementarity condition: either �∗i =0

or ci (x⃗
∗)=0.)

5 �∗i ≥ 0,∀i ∈ ℐ (�∗i > 0,∀i ∈ ℐ ∪ A∗ if the strict
complementarity condition holds.)

(UNIT 7) Numerical Optimization March 28, 2011 12 / 29



Two definitions for the proof of KKT

Tangent cone

A vector d⃗ is said to be a tangent to a point set Ω at point x⃗ if there are a
sequence {z⃗k} and a sequence {tk}, in which tk > 0 and {tk} converges
to 0, such that

lim
k→∞

z⃗k − d⃗

tk
= d⃗ .

The set of all tangents to Ω at x⃗∗ is called the tangent cone.

The set of linearized feasible directions

Given a feasible point x⃗ and the active constraint set A(x⃗), the set of
linearized feasible directions is defined as

ℱ(x⃗) =

{
d⃗

∣∣∣∣∣ d⃗T∇ci (x⃗) = 0 ∀i ∈ ℰ ,
d⃗T∇ci (x⃗) ≥ 0 ∀i ∈ A(x⃗) ∩ ℐ

}
.

It can be shown that ℱ(x⃗) is a cone.
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Outline of the proof of the KKT conditions

1 ∀d⃗ ∈ tangent cone at x⃗∗ d⃗T∇f ≥ 0. (Using the idea of tangent
cone to prove it)

2 Tangent cone at x⃗∗ = feasible directions at x⃗∗

3 By 1 and 2 , d⃗T∇f ≥ 0 for ∀d⃗ ∈ F (x⃗∗)
4 By Farkas lemma , either one need be true.1

(a) ∃d⃗ ∈ ℝn , d⃗T∇f < 0 , BT d⃗ ≥ 0 c⃗T d⃗ = 0
(b) ∇f ∈ {By + Cw ∣y ≥ 0}

5 Since (a) is not true (Because of 3) , (b) must be true.

1The proof of Farkas lemma can be found in last year’s homework 4.
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Example 6

Example

minx1,x2 (x1 − 3
2)2 + (x2 − 1

2)4

s.t. c1(x⃗) = 1− x1 − x2 ≥ 0
c2(x⃗) = 1− x1 + x2 ≥ 0
c3(x⃗) = 1 + x1 − x2 ≥ 0
c4(x⃗) = 1 + x1 + x2 ≥ 0

∇c1 =

(
−1
−1

)
,∇c2 =

(
−1
1

)
,∇c3=

(
1
−1

)
,∇c4 =

(
1
1

)
.

x⃗∗ =

(
1
0

)
, and ∇f (x⃗∗) =

(
2(x∗1− 3

2)
4(x∗2− 1

2)3

)
= 11

(
−1
−1/2

)
.

�⃗∗ =
(

3
4

1
4 0 0

)T
(UNIT 7) Numerical Optimization March 28, 2011 15 / 29



The second order condition

With constraints, we don’t need to consider all the directions. The
directions we only need to worried about are the ”feasible directions”.

The critical cone C(x⃗∗, �⃗∗) is a set of directions defined at the
optimal solution (x⃗∗, �⃗∗)

w⃗ ∈ C(x⃗∗, �⃗∗)⇔

⎧⎨⎩
∇ci (x⃗∗)T w⃗ = 0 ∀i ∈ ℰ
∇ci (x⃗∗)T w⃗ = 0 ∀i ∈ A(x⃗∗) ∩ ℐ, �∗i > 0
∇ci (x⃗∗)T w⃗ ≥ 0 ∀i ∈ A(x⃗∗) ∩ ℐ, �∗i = 0

The second order necessary condition

Suppose x⃗∗ is a local minimizer at which the LICQ holds, and �⃗∗ is the
Lagrange multiplier. Then w⃗T∇2

xxℒ(x⃗∗, �⃗∗)w⃗ ≥ 0, ∀w⃗ ∈ C(x⃗∗, �⃗∗).
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Proof

We perform Taylor expansion at x⃗∗ and evaluate its neighbor z⃗ ,

ℒ(⃗z , �⃗∗) =ℒ(x⃗∗, �⃗∗) + (⃗z − x⃗∗)T∇xℒ(x⃗∗, �⃗∗)

+
1

2
(⃗z − x⃗∗)T∇2

xxℒ(x⃗∗, �⃗∗)(⃗z − x⃗∗) + O(∥z⃗ − x⃗∗∥3)

Since ℒ(x⃗∗, �⃗∗) = f (x⃗∗) (why?) and ∇xℒ(x⃗∗, �⃗∗) = 0. Let w⃗ = z⃗ − x⃗∗,
which is in the critical cone.

ℒ(⃗z , �⃗∗) = f (⃗z)−
∑
∀ i

�∗i ci (⃗z)

= f (⃗z)−
∑
∀ i

�⃗∗i (ci (x⃗
∗) +∇ci (x⃗∗)T w⃗) = f (⃗z)

Thus, f (⃗z) = ℒ(⃗z , �⃗∗) = f (x⃗∗) + 1
2 w⃗

T∇2
xxℒ(x⃗∗, �⃗∗)w⃗ + O(∥z⃗ − x⃗∗∥3),

which is larger than f (x⃗∗) if w⃗T∇2
xxℒ(x⃗∗, �⃗∗)w⃗ ≥ 0.
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Example

Example

min
x1,x2
−0.1(x1 − 4)2 + x22 s.t. x21 − x22 − 1 ≥ 0.

ℒ(x⃗ , �) = −0.1(x1 − 4)2 + x22 + �(x21 − x22 − 1)

∇xℒ =

(
−0.2(x1 − 4) + 2�x1

2x2 − 2�x2

)
,∇xxℒ =

(
−0.2− 2�1 0

0 2− 2�

)
at x⃗∗ =

(
1
0

)
�∗ = 0.3 ∇C (x⃗∗) =

(
2
0

)
The critical cone C(x⃗∗) =

{(
0
w2

)∣∣∣∣w2 ∈ ℝ
}

∇xxℒ(x⃗∗, �⃗∗) =

(
−0.4 0

0 1.4

)
(

0 w2

)( −0.4 0
0 1.4

)(
0
w2

)
=
(

0 1.4w2

)( 0
w2

)
= 1.4w2

2 > 0

(UNIT 7) Numerical Optimization March 28, 2011 18 / 29



Some easy way to check the condition

Is there any easy way to check the condition?

Let Z be a matrix whose column vectors span the subspace of
C(x⃗∗, �⃗∗)

⇒

{
∀w⃗ ∈ C(x⃗∗, �⃗∗), ∃u⃗ ∈ ℝm s.t. w⃗ = Zu⃗

∀u⃗ ∈ ℝm, Zu⃗ ∈ C(x⃗∗, �⃗∗)

To check w⃗T∇xxℒ∗w⃗ ≥ 0, ⇔ u⃗TZT∇xxℒ∗Zu⃗ ≥ 0 for all u⃗
⇔ ZT∇xxℒ∗Z is positive semidefinite.

The matrix ZT∇xxℒ∗Z is called the projected Hessian.
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Active constraint matrix

Let A(x⃗∗) be the matrix whose rows are the gradient of the active
constraints at the optimal solution x⃗∗.

A(x⃗∗)T = [∇ci (x⃗∗)]i∈A(x⃗∗)

The critical cone C(x⃗∗, �⃗∗) is the null space of A(x⃗∗)

w⃗ ∈ C(x⃗∗, �⃗∗)⇔ A(x⃗∗)w⃗ = 0

We don’t consider the case that �∗ = 0 for active ci . (Strict
complementarity condition.)
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Compute the null space of A(x⃗∗)

Using QR factorization

A(x⃗∗)T = Q

[
R
0

]
=
[
Q1 Q2

] [ R1

0

]
= Q1R1

A ∈ ℝm×n, Q ∈ ℝn×n, R ∈ ℝm×m, Q1 ∈ ℝn×m, Q2 ∈ ℝn×(n−m)

The null space of A is spanned by Q2, which means any vectors in the
null space of A is a unique linearly combination of Q2’s column
vectors.

z⃗ = Q2v⃗ Az⃗ = RTQT
1 Q2v⃗ = 0

To check the second order condition is to check if QT
2 ∇2ℒ∗Q2 is positive

definite.
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Duality

Consider the problem: min
x⃗∈ℝn

f (x⃗) subject to c(x⃗) =

⎛⎜⎜⎜⎜⎝
c1(x⃗)
c2(x⃗)

:
.

cm(x⃗)

⎞⎟⎟⎟⎟⎠ ≥ 0

Its Lagrangian function is

ℒ(x⃗ , �⃗) = f (x⃗)− �⃗T c(x⃗)

The dual problem is defined as

max
�⃗∈ℝn

q(�⃗) s.t. �⃗ ≥ 0

where q(�⃗) = inf x⃗ ℒ(x⃗ , �⃗).

(UNIT 7) Numerical Optimization March 28, 2011 22 / 29



Duality

Infimum is the global minimum of ℒ(⋅, �), which may not be defined
or difficult to compute.

For f and −ci are convex, ℒ is also convex ⇒ the local minimizer is
the global minimize.

Wolfe’s duality: another formulation of duality when function is
differentiable.

maxℒ(x⃗ , �⃗)

s.t. ∇xℒ(x⃗ , �⃗) = 0, � ≥ 0
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Example

Example

min(x1 x2) 0.5(x21 + x22 ) s.t. x1 − 1 ≥ 0

ℒ(X1 X2, �) = 0.5(x21 + x22 )− �1(x1 − 1),

∇xℒ =

(
x1 − �1

x2

)
= 0, which implies x1 = �1 and x2 = 0.

q(�) = ℒ(�1, 0, �1) = −0.5�21 + �1.

The dual problem is
max
�1≥0
−0.5�21 + �1
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Weak duality

Weak duality: For any x⃗ and �⃗ feasible, q(�⃗) ≤ f (x⃗)
q(�) = inf x⃗(f (x⃗)− �⃗T c(x⃗)) ≤ f (x⃗)− �⃗T c(x⃗) ≤ f (x⃗)

Example

min
x⃗

c⃗T x⃗ s.t. Ax⃗ − b⃗ ≥ 0, x⃗ ≥ 0

ℒ(x⃗ , �⃗) = c⃗T x⃗ − �⃗T (Ax⃗ − b⃗) = (⃗cT − �⃗TA)x⃗ + b⃗T �⃗

Since x⃗ ≥ 0, if (⃗c − AT �⃗)T < 0, inf x⃗ ℒ → −∞. We require
c⃗T − AT� > 0.

q(�⃗) = inf
x⃗
ℒ(x⃗ , �⃗) = b⃗T �⃗

The dual problem becomes

max
�

b⃗T �⃗ s.t. AT �⃗ ≤ 0 and �⃗ ≥ 0.
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The rock-paper-scissors game (two person zero sum game)

The payoff matrix A =

PPPPPPPPPopp
you

Rock Paper Scissors

Rock 0 1 -1

Paper -1 0 1

Scissors 1 -1 0

Suppose the opponent’s strategy is x⃗ =

⎛⎝ 1/2
1/2

0

⎞⎠.

What should your strategy be to maximize the payoff?
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Problem formulation

Let y⃗ = (y1, y2)T . We can express this problem as

max
y⃗

x⃗TAy⃗ = max
y⃗

−1

2
y1 +

1

2
y2

Therefore, to maximize your wining chance, you should throw paper.

On the other hand, the problem of your opponent is

min
x⃗

x⃗TAy⃗

What if you do not know your opponent’s strategy? It becomes a
min-max or max-min problem.

max
y⃗

min
x⃗

x⃗TAy⃗

(UNIT 7) Numerical Optimization March 28, 2011 27 / 29



Two examples

Example

Consider the payoff matrix A =

(
−1 2
4 3

)
, and x⃗ , y⃗ ∈ {0, 1}.

min
i

max
j

aij = min
i

{
max

j
a1,j ,max

j
a2,j

}
= min{2, 4} = 2.

max
j

min
i

aij = max
j

{
min
i

ai ,1,min
i

ai ,2

}
= max{−1, 2} = 2.

Example

Consider the payoff matrix A =

(
−1 2
4 1

)

min
i

max
j

aij = min
i

{
max

j
a1,j ,max

j
a2,j

}
= min{2, 4} = 2.

max
j

min
i

aij = max
j

{
min
i

ai ,1,min
i

ai ,2

}
= max{−1, 1} = 1.
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Strong duality theorem

Strong duality theorem

max
y⃗

min
x⃗

F (x⃗ , y⃗) = min
x⃗

max
y⃗

F (x⃗ , y⃗) if and only if there exists a point

(x⃗∗, y⃗∗) such that F (x⃗∗, y⃗) ≤ F (x⃗∗, y⃗∗) ≤ F (x⃗ , y⃗∗).

Point (x⃗∗, y⃗∗) is called a saddle point.
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