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Example problem

min
x1,x2

z = −4x1 − 2x2

s.t. x1 + x2 ≤ 5
2x1 + 1/2x2 ≤ 8
x1, x2 ≥ 0
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Matrix formulation

min
x1,x2

z = −4x1 − 2x2

s.t. x1 + x2 ≤ 5
2x1 + 1/2x2 ≤ 8
x1, x2 ≥ 0

Let x⃗ =

(
x⃗1
x⃗2

)
, c⃗ =

(
−4
−2

)
, A =

(
1 1
2 1/2

)
, b⃗ =

(
5
8

)
.

The problem can be written as

min
x⃗

c⃗T x⃗

s.t. Ax⃗ ≤ b⃗

x⃗ ≥ 0
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The standard form

The standard form of linear programmings

minx⃗ z = c⃗T x⃗

s.t. Ax⃗ = b⃗
x⃗ > 0

z : Objective function.

c⃗ : Cost vector ∈ ℝn

A : Constraint matrix ∈ ℝm×n, assuming m ≤ n

Ax⃗ = b⃗ : Linear equality constraints.

The ith constraint is
∑n

j=1 aijxj = bi
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Converting to the standard form

Change inequality constraints to equality constraints:

x1 + x2 + x3 = 5

2x1 +
1

2
x2 + x4 = 8

x3 and x4 are called slack variables.

As a result,

x⃗ =

⎛⎜⎜⎝
x⃗1
x⃗2
x⃗3
x⃗4

⎞⎟⎟⎠ , c⃗ =

⎛⎜⎜⎝
−4
−2
0
0

⎞⎟⎟⎠ ,A =

(
1 1 1 0
2 1/2 0 1

)
, b⃗ =

(
5
8

)
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Rules to converting to standard form

1. If
∑n

j=1 aijxj ≤ bj ⇒ adding a slack variable si ≥ 0∑n
j=1 aijxj + si = bi .

2. If
∑n

j=1 aijxj ≥ bj ⇒ adding a surplus variable ei ≥ 0∑n
j=1 aijxj − ei = bi .

3. If xi ≥ li ⇒ xi = x̂i + li , x̂i ≥ 0.

4. If xi ≤ ui ⇒ xi = ui − x̂i , x̂i ≥ 0.

5. If xi ∈ ℝ ⇒ xi = x̄i − x̂i , x̄i ≥ 0 , x̂i ≥ 0.

6. For the problem minx⃗ c⃗
T x⃗ ⇒ −minx⃗ −c⃗T x⃗ .
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Some terminology

Feasible set: ℱ = {x⃗ ∈ ℝn∣Ax⃗ = b⃗, x⃗ ≥ 0}.
If ℱ ∕= ∅, the problem is feasible or consistent.

If ℱ = ∅, the problem is infeasible.

If c⃗T x⃗ ≥ � for all x⃗ ∈ ℱ , the problem is bounded.

If the solution is at infinity, the problem is unbounded.

The problem may have infinity number of solutions.

Hyperplane H = {x⃗ ∈ ℝn ∣⃗aT x⃗ = �} whose normal is a⃗

Closed half space H = {x⃗ ∈ ℝn ∣⃗aT x⃗ ≤ �} or H = {x⃗ ∈ ℝn ∣⃗aT x⃗ ≥ �}
Polyhedral set or polyhedron (polygon): A set of the intersection of
finite closed half spaces.

Poly tope: nonempty and bounded polyhedron.
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Convex set

Let x⃗1, x⃗2, . . . , x⃗p ∈ ℝn and �1, �2, . . . , �p ∈ ℝ.

Linear combination y⃗ = �1x⃗1 + �2x⃗2 . . .+ �p x⃗p
Affine combination y⃗ = �1x⃗1 + �2x⃗2 . . .+ �p x⃗p

and �1 + �2 + . . .+ �p = 1

Convex combination y⃗ = �1x⃗1 + �2x⃗2 . . .+ �p x⃗p
and 0 ≤ �1, �2, . . . �p ≤ 1
and �1 + �2 + . . .+ �p = 1

Cone combination y⃗ = �1x⃗1 + �2x⃗2 . . .+ �p x⃗p
and �1, �2, . . . , �p ≥ 0

For a set S ⊂ ℝn,S ∕=, if ∀x⃗1, x⃗2 ∈ S s.t. the affine(convex) combination
of x⃗1, x⃗2 are in S , we say S is a affine(convex) set.
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The simplex method

Basic idea
1 Find a “vertex” of the poly-tope.

2 Find the best direction and move to the next “vertex” (pricing).

3 Test optimality of the “vertex”.
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Basic feasible point

A vertex x⃗ in the polytope C is called a basic feasible point.

Geometrically, x⃗ is not a convex combination of any other point in C .

Algebraically, Ax⃗ = b⃗, the columns of A corresponding to the positive
elements of x⃗ are linearly independent.

Theorem: at least one of the solution is the basic feasible point.

Which means we only need to search those basic feasible points.

For m hyperplanes in an n dimensional space, m ≥ n, the intersection
of any n hyperplanes can be a basic feasible point. Therefore, we

have Cm
n =

m!

n!m!
points to check.

For m = 2n, C 2n
n > 2n. The time complexity of doing so is exponential!

We need a systematical way to solve this.
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Basic variables and nonbasic variables

We need to find an intersection of n hyperplanes, whose normal
vectors are linearly independent. (why?)

Partition A = [B∣N] where B is invertible.

Example

For A =

(
1 1 1 0
2 1/2 0 1

)
, we let B =

(
1 0
0 1

)
,N =

(
1 1
2 1/2

)

Partition x⃗ =

[
x⃗B
x⃗N

]
accordingly.

Example

Based on the above partition, x⃗B =

(
x3
x4

)
, x⃗N =

(
x1
x2

)
.
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Compute the basic feasible point

Let x⃗N = 0 and solve Bx⃗B = b⃗

x⃗B is called the “basic variables”
x⃗N is the “nonbasic variables”

x⃗ =

[
B−1b⃗

0⃗

]
is a basic feasible point. (why?)

Example

x⃗ =

⎛⎜⎜⎝
x3
x4
x1
x2

⎞⎟⎟⎠ =

⎛⎜⎜⎝
5
8
0
0

⎞⎟⎟⎠. (Where is this point?)
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Compute the search direction

Rewrite the object function z as a function of nonbasic variables.

A = [B∣N] and Ax⃗ = b⃗

which implies Bx⃗B + Nx⃗N = b⃗.

Let x⃗B = B−1(b⃗ − Nx⃗N) and substitute it to z .

zk+1 = c⃗T x⃗

= c⃗TB x⃗B + c⃗N x⃗N

= c⃗TB B−1(b⃗ − Nx⃗N) + c⃗TN x⃗N

= (−cTB B−1N + c⃗TN )x⃗N + c⃗TB B−1b⃗

= p⃗T x⃗N + c⃗TB B−1b⃗

Now z has only nonbasic variables.
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Pricing vector

The vector p⃗ = c⃗N − NTB−1c⃗B is called the pricing vector.

Since all nonbasic variables are zero at this time, if xi ’s coefficient
(the ith element of p⃗) is negative, then by increasing xi ’s value, we
can decrease z ’s value.

What if all the elements in p⃗ are positive?

If there are more than one elements in p⃗ are negative, which nonbasic
variable xi should be chosen to increase its value?

Example

At this point, z = −4x1 − 2x2. We choose to increase x1.

(UNIT 6) Numerical Optimization March 25, 2011 14 / 26



Search direction

Let the ith element of x⃗N , denoted �i , be the chosen element to be
increased. What is the search direction?

Since all the constraints need be satisfied, to increase �i implies to
change some basic variables. (Other nonbasic variables remain 0.)

How to find this relation?

Ax⃗ = b⃗ ⇒ Bx⃗B + Nx⃗N = b⃗ ⇒ x⃗B = B−1(b⃗ − Nx⃗N)

Let the ith column of N be n⃗i .

x⃗B = B−1(b⃗ − �i n⃗i ).

When �i is increased by 1, the change of x⃗B is −B−1n⃗i
( B−1b⃗ are their current values.).
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Search direction

The search direction is

d⃗ =

⎛⎜⎜⎝
−Bn⃗i

0⃗
1

0⃗

⎞⎟⎟⎠
← Basic variables
← Other nonbasic variables
← The index of �i
← Other nonbasic variables

Example

We choose x1 to increase its value. The 1st column of A is (1 2)T .
Therefore, −B−1n1 = (−1 − 2)T .

d⃗ =

⎛⎜⎜⎝
d3
d4
d1
d2

⎞⎟⎟⎠ =

⎛⎜⎜⎝
−1
−2
1
0

⎞⎟⎟⎠
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Step length

How large can the step length be?

The only constraint is to keep all basic variables nonnegative.

Let � be the step length.

x⃗
(new)
B = x⃗

(now)
B + �d⃗ = B−1b⃗ + �d⃗ ≥ 0

The ratio test: the only basic variables to check are
{xj ∣xj ∈ x⃗B and dj < 0}.(why?)

� = min
xj∈x⃗B ,dj<0

∣xj/dj ∣ .

Example

d3 and d4 are all negative, and x3 = 5, x4 = 8. � = min(∣ − 5/1∣, ∣ − 8/2∣) = 4.

What if all djs are positive?
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Move to the next location

If everything goes well, there will be one nonbasic variable �i becomes
positive, and one basic variable xj becomes zero.

We exchange those two variables. Let �i be a basic variable and let xj
be a nonbasic variable.

This process continues until the optimal solution is found. (How to
know the optimal solution?)

Example

x3 = 5 + (−1) ∗ 4 = 1.
x4 = 8 + (−2) ∗ 4 = 0 becomes nonbasic and x1 = 4 becomes basic.
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The simplex method for linear programming

1 Let ℬ,N be the index set of basic variables and nonbasic variables.

2 For k = 1, 2, . . .

1 B = A(:,ℬ),N = A(:,N ), x⃗B = B−1b, and x⃗N = 0.

2 Solve BT v⃗ = c⃗B

3 Compute p⃗ = c⃗ − NT v⃗ .

4 If p⃗ ≥ 0, stop (the optimal solution found)

5 Select i ∈ N with p⃗(i) < 0.

6 Solve Bs⃗ = A(:, i)

7 If s⃗ < 0, stop (unbounded)

8 j = arg min
xℓ∈x⃗B ,dℓ<0

∣xℓ/dℓ∣ and � = ∣xj/dj ∣.

9 Update x⃗+B = x⃗B − �s⃗, x⃗N = (0, . . . , �, . . . , 0)T .

10 Update ℬ and N by exchanging index i and j .
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Time complexity

The worst case time complexity of the Simplex method is still
exponential.

But practically, only O(n) iterations are required.

This phenomenon has been analyzed by Daniel A. Spielman and
Shang-Hua Teng, and they won the Godel prize in 2008.

See their paper for details: Smoothed Analysis of Algorithms: Why
the Simplex Algorithm Usually Takes Polynomial Time.

There are polynomial-time algorithms for the linear programming
problems.

1981: Leonid Khachiyan(Ellipsoid method)
1984: Narendra Karamarker(Interior point method), which will be
discussed later.
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Lower bound of the answer

Question: Before we solve the problem, can we use the constraints to
estimate the “lower bound” of z(x⃗)?

Example

min
x1,x2

z = 5x1 + 8x2

s.t. x1 + 2x2 ≥ 4 (1)

x1 + 1/2x2 ≥ 2 (2)

x1, x2 ≥ 0

From (1), zx = 5x1 + 8x2 ≥ 4x1 + 8x2 = 4(x1 + 2x2) = 16

From (2), zx = 5x1 + 8x2 ≥ 5x1 + 5
2x2 = 5(x1 + 5

2x2) = 10

From the combination of (1) and (2),
zx = 5x1 + 8x2 ≥ 5x1 + 7.75x2 = 3.5(x1 + 2x2) + 1.5(x1 + 1

2x2) = 17
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Maximum lower bound

What is the “maximum lower bound” of z from constraints?

We multiply y1 to (1) and multiply y2 to (2), and add them together.

(x1 + 2xx)y1 ≥ 4y1
+) (x1 + 1

2x2)y2 ≥ 2y2
(y1 + y2)x1 + (2y1 + 1

2y2)x2 ≥ 4y1 + 2y2

The problem of maximizing the lower bound becomes

maxy1,y2 4y1 + 2y2
s.t. y1 + y2 ≤ 5

2y1 + 1
2y2 ≤ 8

y1, y2 ≥ 0

which is called the dual problem of the original problem.

The original problem is called the primal problem.
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The primal and the dual problem.

The primal and the dual

Primal problem Dual problem

minx⃗ c⃗T x⃗

s.t. Ax⃗ ≥ b⃗
x⃗ ≥ 0

maxy⃗ b⃗T y⃗
s.t. AT y⃗ ≤ c⃗

y⃗ ≥ 0

Example

Primal problem Dual problem

minx1,x2 5x1 + 8x2
s.t. x1 + 2x2 ≥ 4

x1 + 1
2x2 ≥ 2

x1, x2 ≥ 0

maxy1,y2 4y1 + 2y2
s.t. y1 + y2 ≤ 5

2y1 + 1
2y2 ≤ 8

y1, y2 ≥ 0
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Duality

Theorem (The weak duality)

If x⃗ is feasible for the original problem and y⃗ is feasible for the dual
problem , then

y⃗T b⃗ ≤ y⃗TAx⃗ ≤ c⃗T x⃗ .

Theorem (The strong duality)

If x⃗∗ is the optimal solution of the primal. If y⃗∗ is the optimal solution of
the primal. Then

c⃗T x⃗ = b⃗T y⃗

Moreover, if the primal (dual) problem is unbounded, the dual (primal) is
infeasible.
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Complementarity slackness

Given a feasible point, an inequality constraint is called active if its
equality holds. Otherwise it is called inactive.

Theorem (Complementarity slackness)

x⃗∗ and y⃗∗ are optimal solution of the primal and the dual problem if and
only if

1 For j = 1, 2, . . . , n, A(; , j)T y⃗∗ = cj or x
∗
j = 0

2 For i = 1, 2, . . . ,m, A(i , ; )x⃗∗ = bi or y
∗
i = 0

If we add slack variables s⃗ to Ax⃗ + s⃗ = b⃗, the above theorem can be
rewritten as

If a constraint i is active , si = 0.

If a constraint i is inactive , si > 0.

The complementarity slackness condition is y∗i s
∗
i = 0 for all i .
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Example of complementarity slackness

Example

minx1,x2 5x1 + x2
s.t. x1 + 2x2 − s1 = 4

x1 + 1
2x2 − s2 = 2

x1, x2, s1, s2 ≥ 0

maxy1,y2 4y1 + 2y2
s.t. y1 + y2 + t1 = 5

2y1 + 1
2y2 + t2 = 1

y1, y2, t1, t2 ≥ 0

The optimal solution of the primal problem is x⃗∗ = (0, 4), s⃗ = (4, 0).

The optimal solution of the dual problem is y⃗∗ = (0, 2), t⃗ = (3, 0).

x1 + 2x2 = 8 > 4⇒ y1 = 0⇒ s1y1 = 0.

x1 + 1
2x2 = 2⇒ y2 = 2 ∕= 0⇒ s2y2 = 0.

y1 + y2 = 2 < 5⇒ x1 = 0⇒ t1x1 = 0.

2y1 + 1
2y2 = 1⇒ x2 = 4 ∕= 0⇒ t2x2 = 0.
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