## Numerical Optimization

# Unit 6：Linear Programming and the Simplex Method 

## Che－Rung Lee

Scribe：周宗毅

March 25， 2011

## Example problem

$$
\begin{array}{ll}
\min _{x_{1}, x_{2}} & z=-4 x_{1}-2 x_{2} \\
\text { s.t. } & x_{1}+x_{2} \leq 5 \\
& 2 x_{1}+1 / 2 x_{2} \leq 8 \\
& x_{1}, x_{2} \geq 0
\end{array}
$$



## Matrix formulation

$$
\begin{array}{ll}
\min _{x_{1}, x_{2}} & z=-4 x_{1}-2 x_{2} \\
\text { s.t. } & x_{1}+x_{2} \leq 5 \\
& 2 x_{1}+1 / 2 x_{2} \leq 8 \\
& x_{1}, x_{2} \geq 0
\end{array}
$$

- Let $\vec{x}=\binom{\vec{x}_{1}}{\vec{x}_{2}}, \vec{c}=\binom{-4}{-2}, A=\left(\begin{array}{cc}1 & 1 \\ 2 & 1 / 2\end{array}\right), \vec{b}=\binom{5}{8}$.
- The problem can be written as

$$
\begin{array}{ll}
\min _{\vec{x}} & \vec{c}^{T} \vec{x} \\
\text { s.t. } & A \vec{x} \leq \vec{b} \\
& \vec{x} \geq 0
\end{array}
$$

## The standard form

## The standard form of linear programmings

$$
\begin{array}{cc}
\min _{\vec{x}} & z=\vec{c}^{\top} \vec{x} \\
\text { s.t. } & A \vec{x}=\vec{b} \\
& \vec{x}>0
\end{array}
$$

- z: Objective function.
- $\vec{c}:$ Cost vector $\in \mathbb{R}^{n}$
- A : Constraint matrix $\in \mathbb{R}^{m \times n}$, assuming $m \leq n$
- $A \vec{x}=\vec{b}$ : Linear equality constraints.
- The $i_{t h}$ constraint is $\sum_{j=1}^{n} a_{i j} x_{j}=b_{i}$


## Converting to the standard form

- Change inequality constraints to equality constraints:

$$
\begin{array}{r}
x_{1}+x_{2}+x_{3}=5 \\
2 x_{1}+\frac{1}{2} x_{2}+x_{4}=8
\end{array}
$$

- $x_{3}$ and $x_{4}$ are called slack variables.
- As a result,

$$
\vec{x}=\left(\begin{array}{c}
\vec{x}_{1} \\
\vec{x}_{2} \\
\vec{x}_{3} \\
\vec{x}_{4}
\end{array}\right), \vec{c}=\left(\begin{array}{c}
-4 \\
-2 \\
0 \\
0
\end{array}\right), A=\left(\begin{array}{cccc}
1 & 1 & 1 & 0 \\
2 & 1 / 2 & 0 & 1
\end{array}\right), \vec{b}=\binom{5}{8}
$$

## Rules to converting to standard form

1. If $\sum_{j=1}^{n} a_{i j} x_{j} \leq b_{j}$
$\Rightarrow$ adding a slack variable $s_{i} \geq 0$

$$
\sum_{j=1}^{n} a_{i j} x_{j}+s_{i}=b_{i}
$$

2. If $\sum_{j=1}^{n} a_{i j} x_{j} \geq b_{j}$
$\Rightarrow$ adding a surplus variable $e_{i} \geq 0$

$$
\sum_{j=1}^{n} a_{i j} x_{j}-e_{i}=b_{i}
$$

3. If $x_{i} \geq I_{i}$
$\Rightarrow \quad x_{i}=\hat{x}_{i}+l_{i}, \hat{x}_{i} \geq 0$.
4. If $x_{i} \leq u_{i}$
$\Rightarrow \quad x_{i}=u_{i}-\hat{x}_{i}, \hat{x}_{i} \geq 0$.
5. If $x_{i} \in \mathbb{R}$
$\Rightarrow \quad x_{i}=\bar{x}_{i}-\hat{x}_{i}, \bar{x}_{i} \geq 0, \hat{x}_{i} \geq 0$.
6. For the problem $\min _{\vec{x}} \vec{c}^{T} \vec{x} \Rightarrow-\min _{\vec{x}}-\vec{c}^{T} \vec{x}$.

## Some terminology

- Feasible set: $\mathcal{F}=\left\{\vec{x} \in \mathbb{R}^{n} \mid A \vec{x}=\vec{b}, \vec{x} \geq 0\right\}$.
- If $\mathcal{F} \neq \emptyset$, the problem is feasible or consistent.
- If $\mathcal{F}=\emptyset$, the problem is infeasible.
- If $\vec{c}^{T} \vec{x} \geq \alpha$ for all $\vec{x} \in \mathcal{F}$, the problem is bounded.
- If the solution is at infinity, the problem is unbounded.
- The problem may have infinity number of solutions.
- Hyperplane $H=\left\{\vec{x} \in \mathbb{R}^{n} \mid \vec{a}^{T} \vec{x}=\beta\right\}$ whose normal is $\vec{a}$
- Closed half space $H=\left\{\vec{x} \in \mathbb{R}^{n} \mid \vec{a}^{T} \vec{x} \leq \beta\right\}$ or $H=\left\{\vec{x} \in \mathbb{R}^{n} \mid \vec{a}^{T} \vec{x} \geq \beta\right\}$
- Polyhedral set or polyhedron (polygon): A set of the intersection of finite closed half spaces.
- Poly tope: nonempty and bounded polyhedron.


## Convex set

Let $\vec{x}_{1}, \vec{x}_{2}, \ldots, \vec{x}_{p} \in \mathbb{R}^{n}$ and $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{p} \in \mathbb{R}$.

| Linear combination | $\vec{y}=\alpha_{1} \vec{x}_{1}+\alpha_{2} \vec{x}_{2} \ldots+\alpha_{p} \vec{x}_{p}$ |
| :--- | :--- |
| Affine combination | $\vec{y}=\alpha_{1} \vec{x}_{1}+\alpha_{2} \vec{x}_{2} \ldots+\alpha_{p} \vec{x}_{p}$ <br> and $\alpha_{1}+\alpha_{2}+\ldots+\alpha_{p}=1$ |
| Convex combination | $\vec{y}=\alpha_{1} \vec{x}_{1}+\alpha_{2} \vec{x}_{2} \ldots+\alpha_{p} \vec{x}_{p}$ <br> and $0 \leq \alpha_{1}, \alpha_{2}, \ldots \alpha_{p} \leq 1$ <br> and $\alpha_{1}+\alpha_{2}+\ldots+\alpha_{p}=1$ |
| Cone combination | $\vec{y}=\alpha_{1} \vec{x}_{1}+\alpha_{2} \vec{x}_{2} \ldots+\alpha_{p} \vec{x}_{p}$ <br> and $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{p} \geq 0$ |

For a set $S \subset \mathbb{R}^{n}, S \neq$, if $\forall \vec{x}_{1}, \vec{x}_{2} \in S$ s.t. the affine(convex) combination of $\vec{x}_{1}, \vec{x}_{2}$ are in $S$, we say $S$ is a affine(convex) set.

## The simplex method

## Basic idea

(1) Find a "vertex" of the poly-tope.
(2) Find the best direction and move to the next "vertex" (pricing).
(3) Test optimality of the "vertex".

## Basic feasible point

- A vertex $\vec{x}$ in the polytope $C$ is called a basic feasible point.
- Geometrically, $\vec{x}$ is not a convex combination of any other point in $C$.
- Algebraically, $A \vec{x}=\vec{b}$, the columns of $A$ corresponding to the positive elements of $\vec{x}$ are linearly independent.
- Theorem: at least one of the solution is the basic feasible point.
- Which means we only need to search those basic feasible points.
- For $m$ hyperplanes in an $n$ dimensional space, $m \geq n$, the intersection of any $n$ hyperplanes can be a basic feasible point. Therefore, we have $C_{n}^{m}=\frac{m!}{n!m!}$ points to check.
- For $m=2 n, C_{n}^{2 n}>2^{n}$. The time complexity of doing so is exponential!
- We need a systematical way to solve this.


## Basic variables and nonbasic variables

- We need to find an intersection of $n$ hyperplanes, whose normal vectors are linearly independent. (why?)
- Partition $A=[B \mid N]$ where $B$ is invertible.


## Example

For $A=\left(\begin{array}{cccc}1 & 1 & 1 & 0 \\ 2 & 1 / 2 & 0 & 1\end{array}\right)$, we let $B=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right), N=\left(\begin{array}{cc}1 & 1 \\ 2 & 1 / 2\end{array}\right)$

- Partition $\vec{x}=\left[\begin{array}{l}\vec{x}_{B} \\ \vec{x}_{N}\end{array}\right]$ accordingly.


## Example

Based on the above partition, $\vec{x}_{B}=\binom{x_{3}}{x_{4}}, \vec{x}_{N}=\binom{x_{1}}{x_{2}}$.

## Compute the basic feasible point

- Let $\vec{x}_{N}=0$ and solve $B \vec{x}_{B}=\vec{b}$
- $\vec{x}_{B}$ is called the "basic variables"
- $\vec{x}_{N}$ is the "nonbasic variables"
- $\vec{x}=\left[\begin{array}{c}B^{-1} \vec{b} \\ \overrightarrow{0}\end{array}\right]$ is a basic feasible point. (why?)


## Example

$\vec{x}=\left(\begin{array}{l}x_{3} \\ x_{4} \\ x_{1} \\ x_{2}\end{array}\right)=\left(\begin{array}{l}5 \\ 8 \\ 0 \\ 0\end{array}\right) .($ Where is this point?)

## Compute the search direction

- Rewrite the object function $z$ as a function of nonbasic variables.

$$
A=[B \mid N] \text { and } A \vec{x}=\vec{b}
$$

which implies $B \vec{x}_{B}+N \vec{x}_{N}=\vec{b}$.

- Let $\vec{x}_{B}=B^{-1}\left(\vec{b}-N \vec{x}_{N}\right)$ and substitute it to $z$.

$$
\begin{aligned}
z_{k+1} & =\vec{c}^{T} \vec{x} \\
& =\vec{c}_{B}^{T} \vec{x}_{B}+\vec{c}_{N} \vec{x}_{N} \\
& =\vec{c}_{B}^{T} B^{-1}\left(\vec{b}-N \vec{x}_{N}\right)+\vec{c}_{N}^{T} \vec{x}_{N} \\
& =\left(-c_{B}^{T} B^{-1} N+\vec{c}_{N}^{T}\right) \vec{x}_{N}+\vec{c}_{B}^{T} B^{-1} \vec{b} \\
& =\vec{p}^{T} \vec{x}_{N}+\vec{c}_{B}^{T} B^{-1} \vec{b}
\end{aligned}
$$

Now $z$ has only nonbasic variables.

## Pricing vector

- The vector $\vec{p}=\vec{c}_{N}-N^{T} B^{-1} \vec{c}_{B}$ is called the pricing vector.
- Since all nonbasic variables are zero at this time, if $x_{i}$ 's coefficient (the ith element of $\vec{p}$ ) is negative, then by increasing $x_{i}$ 's value, we can decrease $z$ 's value.
- What if all the elements in $\vec{p}$ are positive?
- If there are more than one elements in $\vec{p}$ are negative, which nonbasic variable $x_{i}$ should be chosen to increase its value?


## Example

At this point, $z=-4 x_{1}-2 x_{2}$. We choose to increase $x_{1}$.

## Search direction

Let the $i$ th element of $\vec{x}_{N}$, denoted $\nu_{i}$, be the chosen element to be increased. What is the search direction?

- Since all the constraints need be satisfied, to increase $\nu_{i}$ implies to change some basic variables. (Other nonbasic variables remain 0.)
- How to find this relation?

$$
A \vec{x}=\vec{b} \Rightarrow B \vec{x}_{B}+N \vec{x}_{N}=\vec{b} \Rightarrow \vec{x}_{B}=B^{-1}\left(\vec{b}-N \vec{x}_{N}\right)
$$

- Let the $i$ th column of $N$ be $\vec{n}_{i}$.

$$
\vec{x}_{B}=B^{-1}\left(\vec{b}-\nu_{i} \vec{n}_{i}\right)
$$

- When $\nu_{i}$ is increased by 1 , the change of $\vec{x}_{B}$ is $-B^{-1} \vec{n}_{i}$ ( $B^{-1} \vec{b}$ are their current values.).


## Search direction

- The search direction is

$$
\vec{d}=\left(\begin{array}{c}
-B \vec{n}_{i} \\
\overrightarrow{0} \\
1 \\
\overrightarrow{0}
\end{array}\right) \begin{aligned}
& \leftarrow \text { Basic variables } \\
& \leftarrow \text { Other nonbasic variables } \\
& \leftarrow \text { The index of } \nu_{i} \\
& \leftarrow \text { Other nonbasic variables }
\end{aligned}
$$

## Example

We choose $x_{1}$ to increase its value. The 1st column of $A$ is $\left(\begin{array}{ll}1 & 2\end{array}\right)^{T}$. Therefore, $-B^{-1} n_{1}=\left(\begin{array}{ll}-1 & -2\end{array}\right)^{T}$.

$$
\vec{d}=\left(\begin{array}{l}
d_{3} \\
d_{4} \\
d_{1} \\
d_{2}
\end{array}\right)=\left(\begin{array}{c}
-1 \\
-2 \\
1 \\
0
\end{array}\right)
$$

## Step length

How large can the step length be?

- The only constraint is to keep all basic variables nonnegative.
- Let $\alpha$ be the step length.

$$
\vec{x}_{B}^{(\text {new })}=\vec{x}_{B}^{(\text {now })}+\alpha \vec{d}=B^{-1} \vec{b}+\alpha \vec{d} \geq 0
$$

- The ratio test: the only basic variables to check are $\left\{x_{j} \mid x_{j} \in \vec{x}_{B}\right.$ and $\left.d_{j}<0\right\}$.(why?)
- $\alpha=\min _{x_{j} \in \bar{x}_{B}, d_{j}<0}\left|x_{j} / d_{j}\right|$.


## Example

$d_{3}$ and $d_{4}$ are all negative, and $x_{3}=5, x_{4}=8 . \alpha=\min (|-5 / 1|,|-8 / 2|)=4$.

- What if all $d_{j} \mathrm{~s}$ are positive?


## Move to the next location

- If everything goes well, there will be one nonbasic variable $\nu_{i}$ becomes positive, and one basic variable $x_{j}$ becomes zero.
- We exchange those two variables. Let $\nu_{i}$ be a basic variable and let $x_{j}$ be a nonbasic variable.
- This process continues until the optimal solution is found. (How to know the optimal solution?)


## Example

$$
\begin{aligned}
& x_{3}=5+(-1) * 4=1 \\
& x_{4}=8+(-2) * 4=0 \text { becomes nonbasic and } x_{1}=4 \text { becomes basic. }
\end{aligned}
$$

## The simplex method for linear programming

(1) Let $\mathcal{B}, \mathcal{N}$ be the index set of basic variables and nonbasic variables.
(2) For $k=1,2, \ldots$
$1 B=A(:, \mathcal{B}), N=A(:, \mathcal{N}), \vec{x}_{B}=B^{-1} b$, and $\vec{x}_{N}=0$.
2 Solve $B^{T} \vec{v}=\vec{c}_{B}$
3 Compute $\vec{p}=\vec{c}-N^{T} \vec{v}$.
4 If $\vec{p} \geq 0$, stop (the optimal solution found)
5 Select $i \in \mathcal{N}$ with $\vec{p}(i)<0$.
6 Solve $B \vec{s}=A(:, i)$
7 If $\vec{s}<0$, stop (unbounded)
$8 j=\underset{x_{\ell} \in \bar{x}_{B}, d_{\ell}<0}{\arg \min }\left|x_{\ell} / d_{\ell}\right|$ and $\alpha=\left|x_{j} / d_{j}\right|$.
9 Update $\vec{x}_{B}^{+}=\vec{x}_{B}-\alpha \vec{s}, \vec{x}_{N}=(0, \ldots, \alpha, \ldots, 0)^{T}$.
10 Update $\mathcal{B}$ and $\mathcal{N}$ by exchanging index $i$ and $j$.

## Time complexity

- The worst case time complexity of the Simplex method is still exponential.
- But practically, only $O(n)$ iterations are required.
- This phenomenon has been analyzed by Daniel A. Spielman and Shang-Hua Teng, and they won the Godel prize in 2008.
- See their paper for details: Smoothed Analysis of Algorithms: Why the Simplex Algorithm Usually Takes Polynomial Time.
- There are polynomial-time algorithms for the linear programming problems.
- 1981: Leonid Khachiyan(Ellipsoid method)
- 1984: Narendra Karamarker(Interior point method), which will be discussed later.


## Lower bound of the answer

Question: Before we solve the problem, can we use the constraints to estimate the "lower bound" of $z(\vec{x})$ ?

## Example

$$
\begin{array}{cl}
\min _{x_{1}, x_{2}} & z=5 x_{1}+8 x_{2} \\
\text { s.t. } & x_{1}+2 x_{2} \geq 4 \\
& x_{1}+1 / 2 x_{2} \geq 2 \\
& x_{1}, x_{2} \geq 0 \tag{2}
\end{array}
$$

- From (1), $z_{x}=5 x_{1}+8 x_{2} \geq 4 x_{1}+8 x_{2}=4\left(x_{1}+2 x_{2}\right)=16$
- From (2), $z_{x}=5 x_{1}+8 x_{2} \geq 5 x_{1}+\frac{5}{2} x_{2}=5\left(x_{1}+\frac{5}{2} x_{2}\right)=10$
- From the combination of (1) and (2),

$$
z_{x}=5 x_{1}+8 x_{2} \geq 5 x_{1}+7.75 x_{2}=3.5\left(x_{1}+2 x_{2}\right)+1.5\left(x_{1}+\frac{1}{2} x_{2}\right)=17
$$

## Maximum lower bound

- What is the "maximum lower bound" of $z$ from constraints?
- We multiply $y_{1}$ to (1) and multiply $y_{2}$ to (2), and add them together.

$$
\begin{aligned}
\left(x_{1}+2 x_{x}\right) y_{1} & \geq 4 y_{1} \\
+) & \left(x_{1}+\frac{1}{2} x_{2}\right) y_{2}
\end{aligned} \geq 2 y_{2},
$$

- The problem of maximizing the lower bound becomes

$$
\begin{array}{ll}
\max _{y_{1}, y_{2}} & 4 y_{1}+2 y_{2} \\
\text { s.t. } & y_{1}+y_{2} \leq 5 \\
& 2 y_{1}+\frac{1}{2} y_{2} \leq 8 \\
& y_{1}, y_{2} \geq 0
\end{array}
$$

which is called the dual problem of the original problem.

- The original problem is called the primal problem.


## The primal and the dual problem.

## The primal and the dual

\[

\]

## Example

| Primal problem |  | Dual problem |  |
| :--- | :--- | :--- | :--- |
| $\min _{x_{1}, x_{2}}$ | $5 x_{1}+8 x_{2}$ | $\max _{y_{1}, y_{2}}$ | $4 y_{1}+2 y_{2}$ |
| s.t. | $x_{1}+2 x_{2} \geq 4$ | s.t. | $y_{1}+y_{2} \leq 5$ |
|  | $x_{1}+\frac{1}{2} x_{2} \geq 2$ |  | $2 y_{1}+\frac{1}{2} y_{2} \leq 8$ |
|  | $x_{1}, x_{2} \geq 0$ |  | $y_{1}, y_{2} \geq 0$ |

## Duality

## Theorem (The weak duality)

If $\vec{x}$ is feasible for the original problem and $\vec{y}$ is feasible for the dual problem, then

$$
\vec{y}^{\top} \vec{b} \leq \vec{y}^{\top} A \vec{x} \leq \vec{c}^{\top} \vec{x}
$$

## Theorem (The strong duality)

If $\vec{x}^{*}$ is the optimal solution of the primal. If $\vec{y}^{*}$ is the optimal solution of the primal. Then

$$
\vec{c}^{\top} \vec{x}=\vec{b}^{T} \vec{y}
$$

Moreover, if the primal (dual) problem is unbounded, the dual (primal) is infeasible.

## Complementarity slackness

Given a feasible point, an inequality constraint is called active if its equality holds. Otherwise it is called inactive.

## Theorem (Complementarity slackness)

$\vec{x}^{*}$ and $\vec{y}^{*}$ are optimal solution of the primal and the dual problem if and only if
(1) For $j=1,2, \ldots, n, A(;, j)^{T} \vec{y}^{*}=c_{j}$ or $x_{j}^{*}=0$
(2) For $i=1,2, \ldots, m, A(i, ;) \vec{x}^{*}=b_{i}$ or $y_{i}^{*}=0$

If we add slack variables $\vec{s}$ to $A \vec{x}+\vec{s}=\vec{b}$, the above theorem can be rewritten as

- If a constraint $i$ is active, $s_{i}=0$.
- If a constraint $i$ is inactive, $s_{i}>0$.
- The complementarity slackness condition is $y_{i}^{*} s_{i}^{*}=0$ for all $i$.


## Example of complementarity slackness

## Example

| $\min _{x_{1}, x_{2}}$ | $5 x_{1}+x_{2}$ | $\max _{y_{1}, y_{2}}$ | $4 y_{1}+2 y_{2}$ |
| :--- | :--- | :--- | :--- |
| s.t. | $x_{1}+2 x_{2}-s_{1}=4$ | s.t. | $y_{1}+y_{2}+t_{1}=5$ |
|  | $x_{1}+\frac{1}{2} x_{2}-s_{2}=2$ |  | $2 y_{1}+\frac{1}{2} y_{2}+t_{2}=1$ |
|  | $x_{1}, x_{2}, s_{1}, s_{2} \geq 0$ |  | $y_{1}, y_{2}, t_{1}, t_{2} \geq 0$ |

The optimal solution of the primal problem is $\vec{x}^{*}=(0,4), \vec{s}=(4,0)$.
The optimal solution of the dual problem is $\vec{y}^{*}=(0,2), \vec{t}=(3,0)$.

- $x_{1}+2 x_{2}=8>4 \Rightarrow y_{1}=0 \Rightarrow s_{1} y_{1}=0$.
- $x_{1}+\frac{1}{2} x_{2}=2 \Rightarrow y_{2}=2 \neq 0 \Rightarrow s_{2} y_{2}=0$.
- $y_{1}+y_{2}=2<5 \Rightarrow x_{1}=0 \Rightarrow t_{1} x_{1}=0$.
- $2 y_{1}+\frac{1}{2} y_{2}=1 \Rightarrow x_{2}=4 \neq 0 \Rightarrow t_{2} x_{2}=0$.

