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Example problem

min  z = —4x3 — 2x»
X1,X2

st. x1+x<5h
2X1—|—1/2X2 <8
xy,x2 > 0

(UNIT 6) Numerical Optimization March 25, 2011 2 /26



Matrix formulation

min  z = —4x; — 2x»
X1,X2

s.t. x1+x <5
2x1+1/2x < 8
X1, X2 20

s (e ()= (2 )5 (2)

@ The problem can be written as
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The standard form

The standard form of linear programmings

: Objective function.
. Cost vector € R”

N

c
A : Constraint matrix € R™*" assuming m < n
A% = b : Linear equality constraints.

The iy, constraint is Zf:l ajjxj = b;
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Converting to the standard form

@ Change inequality constraints to equality constraints:

X1+ x2 + X3 5
1
2X1+§X2+X4 8
@ x3 and xy are called slack variables.
@ As a result,
X1 —4
N ! - | -2 (1 10 » (5
s T o ’A_<2 1/2 0 1>’b_(8)
X4 0
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Rules to converting to standard form

Lo If Y7 ax < by = adding a slack variable s; > 0
2_7:1 ajjXj + s; = b;.
2. If 37 a5x > by = adding a surplus variable ¢; > 0

n — .
2 j=1 3Xj — & = bi.

3. Ifx; > = x=X+1,%>0.

4, |fX,'§U,' = X,':U,'—j\(,',)?,'ZO.

5. |fX,'ER = X=X —X,X%x>0,%>0.
6. For the problem ming ¢’ = ming —C ' X.
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Some terminology

Feasible set: F = {X € R"|AX = b,X > 0}.

If F # (), the problem is feasible or consistent.

If 7 =0, the problem is infeasible.

If 2T% > « for all X € F, the problem is bounded.

If the solution is at infinity, the problem is unbounded.

The problem may have infinity number of solutions.

=T =

e Hyperplane H = {X € R"|3' X = 8} whose normal is 3

Closed half space H = {X € R"|3TX < 8} or H= {X € R"|3" X > 3}
Polyhedral set or polyhedron (polygon): A set of the intersection of
finite closed half spaces.

Poly tope: nonempty and bounded polyhedron.
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Convex set

Let )?1,)_(’2,...,)_(’,, € R"” and a1, 02,...,0p eR.

Linear combination | ¥ = anXi + aoXo ... + apX,
Affine combination y=o0aXy +axXs... +apXy,
andag+ax+...+ap=1
Convex combination | ¥ = a1X] + aoXo ... + apX,
and 0 < ag,a,...0p <1
andag+ax+...+ap=1
Cone combination y=a1X] +axXa. ..+ apXp
and ag,a2,...,ap, >0

For aset S CR",S #, if VXi, X € S s.t. the affine(convex) combination
of X1,X are in S, we say S is a affine(convex) set.
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The simplex method

Basic idea

@ Find a “vertex” of the poly-tope.
@ Find the best direction and move to the next “vertex" (pricing).

© Test optimality of the “vertex”.
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Basic feasible point

A vertex X in the polytope C is called a basic feasible point.
Geometrically, X is not a convex combination of any other point in C.

Algebraically, AX = b, the columns of A corresponding to the positive
elements of X are linearly independent.

Theorem: at least one of the solution is the basic feasible point.

@ Which means we only need to search those basic feasible points.

@ For m hyperplanes in an n dimensional space, m > n, the intersection

of any n hyperplanes can be a basic feasible point. Therefore, we
[

m! )
have C,' = —— points to check.
n'm!
o For m=2n, C2" > 2", The time complexity of doing so is exponential!
e We need a systematical way to solve this.
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Basic variables and nonbasic variables

@ We need to find an intersection of n hyperplanes, whose normal
vectors are linearly independent. (why?)
e Partition A = [B|N] where B is invertible.

1 1 10 10 1 1
ForA_<2 12 0 1),weletB_<0 1),N_<2 1/2)
o XB .
o Partition X = [ ~ ] accordingly.

N

e X - X
Based on the above partition, Xg = ( 3 ) J XNy = ( ! )
X4 X2
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Compute the basic feasible point

@ Let Xy = 0 and solve BxXg = b

o Xg is called the “basic variables”
e Xy is the “nonbasic variables”

__[B7%], o .
e X = 5 is a basic feasible point. (why?)

X3
X4
X1
X2

X1
I
I

. (Where is this point?)

O O 0 o1
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Compute the search direction

@ Rewrite the object function z as a function of nonbasic variables.
A= [B|N] and A% = b

which implies BXg + NXy = b.
o Let X3 = B~1(b— NXy) and substitute it to z.

Zik+1 = ET)_('
T =

Il

3
[oy)
3
+
2
B
2

“H(b— NXy) + & Xy
(—cg BTN + &))sn + % B71hb
= B'Av+2%B7'h

Il

s
[oy)

vy

Now z has only nonbasic variables.
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@ The vector = ¢y — N7 B~1¢&z is called the pricing vector.

@ Since all nonbasic variables are zero at this time, if x;'s coefficient
(the ith element of p) is negative, then by increasing x;'s value, we
can decrease z's value.

@ What if all the elements in p are positive?

o If there are more than one elements in p are negative, which nonbasic
variable x; should be chosen to increase its value?

At this point, z = —4x; — 2x». We choose to increase xi.
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Search direction

Let the ith element of Xy, denoted v;, be the chosen element to be
increased. What is the search direction?

@ Since all the constraints need be satisfied, to increase v; implies to
change some basic variables. (Other nonbasic variables remain 0.)

@ How to find this relation?
AR=b = BXg+ NXy=b = %z =B (b— Nzy)
@ Let the ith column of N be A;.
Xg = B7Y(b — vjf;).

@ When vj is increased by 1, the change of Xg is —B ™17

( B~1b are their current values.).
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Search direction

@ The search direction is

—Bi; + Basic variables

J_ 0 < Other nonbasic variables
1 < The index of v;

0 < Other nonbasic variables

We choose x; to increase its value. The 1st column of Ais (1 2)7.
Therefore, —-B~*n; = (-1 —2)7.

d3 -1
S O I
=g || 1
d 0
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Step length

How large can the step length be?
@ The only constraint is to keep all basic variables nonnegative.

@ Let a be the step length.
grew) _ row) L 0~ B4 ad > 0

@ The ratio test: the only basic variables to check are
{xj|xj € Xg and d; < 0}.(why?)

e = min |x;/d;|.
xjeis,dj<o| G/ djl

ds and dy are all negative, and x3 = 5,x, = 8. @ = min(| —5/1],| — 8/2|) = 4.

o What if all djs are positive?
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Move to the next location

o If everything goes well, there will be one nonbasic variable v; becomes
positive, and one basic variable x; becomes zero.

@ We exchange those two variables. Let v; be a basic variable and let x;
be a nonbasic variable.

@ This process continues until the optimal solution is found. (How to
know the optimal solution?)

X3:5+(—1)*4:
x4 = 8+ (—2) x4 = 0 becomes nonbasic and x; = 4 becomes basic.

(UNIT 6) Numerical Optimization March 25, 2011 18 / 26



The simplex method for linear programming

© Let B, N be the index set of basic variables and nonbasic variables.

Q@ Fork=1,2,...

B = A(,B),N = A(:, N'), %5 = B~'b, and %y = 0.
Solve BTV = &

Compute p=¢— NTv.

If p > 0, stop (the optimal solution found)

Select i € N with p(i) < 0.

[ Solve BS = A(:, i)

If § <0, stop (unbounded)

B j= argmin |x;/d| and o = |x;/d}].

Xxp EXp,dp<0
B Update X3 = Xg — a3, Xy = (0,...,q,...,0)".

i Update B and N by exchanging index i and j.
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Time complexity

@ The worst case time complexity of the Simplex method is still
exponential.

e But practically, only O(n) iterations are required.

@ This phenomenon has been analyzed by Daniel A. Spielman and
Shang-Hua Teng, and they won the Godel prize in 2008.

@ See their paper for details: Smoothed Analysis of Algorithms: Why
the Simplex Algorithm Usually Takes Polynomial Time.

@ There are polynomial-time algorithms for the linear programming
problems.

e 1981: Leonid Khachiyan(Ellipsoid method)
o 1984: Narendra Karamarker(Interior point method), which will be
discussed later.
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Lower bound of the answer

Question: Before we solve the problem, can we use the constraints to
estimate the “lower bound” of z(X)?

Example

min z=>5x1 + 8x»

X1,%2

s.t. x1+2xp > 4 (1)
x1+1/2xp > 2 (2)
x1,x2 >0

@ From (1), Zy = 5x1 +8x0 > 4x1 +8x0 = 4(X1 T 2X2) =16
o From (2), z, = 5x1 + 8x2 > 5x1 + 3x = 5(x1 + 3x2) = 10
e From the combination of (1) and (2),
z, = 5x1 + 8x2 > 5x1 + 7.75% = 3.5(x1 + 2x2) + 1.5(x1 + 2x) = 17

v
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Maximum lower bound

@ What is the “maximum lower bound” of z from constraints?

e We multiply y; to (1) and multiply y» to (2), and add them together.

(Xl + 2Xx)y1 > 4}/1
+) (x1 + %Xz)yz > 2y
ty)xa+Qa+sze)e > 4n+2y

@ The problem of maximizing the lower bound becomes

maxy, y, 4y1+ 2y
s.t. vi+y2<5b
2y1+ 32 < 8
y1,2 >0
which is called the dual problem of the original problem.

@ The original problem is called the primal problem.
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The primal and the dual problem.

The primal and the dual

Primal problem Dual problem

ming  ¢7X max; by

s.t. AX > b s.t. Aly<¢
X>0 y=>0

v

Primal problem Dual problem
min,, x, 5x1 + 8xo maxy, ,, 4y1+ 2y
s.t. X1 +2x0 > 4 s.t. yi+y2 <5
X1+ 3x > 2 2y1+ 3y, <8
x1,x2 > 0 y1,y2 >0
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Theorem (The weak duality)

If X is feasible for the original problem and y is feasible for the dual
problem , then .
yIb<yTAx <2’z

Theorem (The strong duality)

If X* is the optimal solution of the primal. If y* is the optimal solution of
the primal. Then

¢'x=b"y
Moreover, if the primal (dual) problem is unbounded, the dual (primal) is
infeasible.
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Complementarity slackness

Given a feasible point, an inequality constraint is called active if its
equality holds. Otherwise it is called inactive.

Theorem (Complementarity slackness)

X* and y* are optimal solution of the primal and the dual problem if and
only if

Q Forj=1,2,....n AG,J)TV = ¢ or xt =0

Q Fori=1,2,....m, A(i,;)X* =bjory =0

If we add slack variables s to AX + 5 = E the above theorem can be
rewritten as

o If a constraint i is active , s; = 0.
@ If a constraint / is inactive , s; > 0.

@ The complementarity slackness condition is y/s’ = 0 for all /.
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Example of complementarity slackness

min, x, 5x1 + X maxy, ,, 4y1+ 2y

s.t. x1+2x —s1 =4 s.t. nn+y+t1=5
X1—|—%X2—52:2 2y1—|—%y2—|-t2:1
X17X275175220 )/17}’27t1,t220

The optimal solution of the primal problem is X* = (0,4),s = (4,0).
The optimal solution of the dual problem is ¥* = (0,2),t = (3,0).
e x1+2x%=8>4=y;=0= s34 =0.
° x1+%x2:2:>y2:27é0:>52y2:0.
e y1+yw=2<b5=x=0= t1x3 =0.
° 2y1—|—%y2:1:>X2:4750§t2X2=0.
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