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Linear least squares

Given samplings ~a1,~a2, . . .~am ∈ Rn for observations
b1, b2, . . . bm ∈ R1, the linear least square method wants to find
~x = (x1, x2, . . . , xn)T ∈ Rn s.t. F (~x) =

∑m
i=1(~aTi ~x − bi )

2 is
minimized.

Let A =


~aT1
~aT2

:
.
~aTm

 ∈ Rm×n, b =


b1
b2

:
.
bm

 ∈ Rm.

Let F (~x) = ‖A~x − ~b‖2 = (A~x − ~b)T (A~x − ~b). The problem can be
written as

min
~x

F (~x)
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Normal equation

The optimal condition of linear least squares is ∇F = 0,

∇F (~x) = AT (A~x − ~b) = 0.

The equation
ATA~x = AT~b, (1)

is called the normal equation.

Matrix ATA is symmetric positive semi-definite. (why?)

If ATA is SPD, we can solve (1) by the Cholesky decomposition.

If ATA is ill-conditioned, solving (1) directly is not numerically stable.

How to solve (1) if ATA is singular or ill-conditioned?

A best way to solve the normal equation is by the QR method.
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QR method

The QR method for linear least square problem for m ≥ n.

Algorithm 1: QR method

1 Compute A’s QR decomposition:

AP = [Q1 Q2]

(
Rk×k Tk×(n−k)

0(m−k)×k 0(m−k)×(n−k)

)
, (2)

where Q = [Q1 Q2] is orthogonal, R is full ranked upper triangular,
and P is a permutation matrix.

2 ~x∗ = P

(
R−1QT

1
~b

~0m−k

)
.
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Matrix rank and orthogonal matrix

Rank of a matrix: the number of linearly independent rows or
columns of a matrix.

If A’s rank is k ≤ n ≤ m, R is a square upper triangular matrix of size
k × k .

A matrix Q is called an orthogonal matrix if QTQ = I , which means
Q−1 = QT .

In (2), Q = [Q1 Q2] is an orthogonal matrix, which implies
QT

1 Q1 = Ik , QT
2 Q2 = In−k , QT

1 Q2 = 0k×(n−k), and

QT
2 Q1 = 0(n−k)×k .
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Geometrical interpretation of linear least square

The problem min
~x
‖A~x − ~b‖2 is to find a linear combination of A’s

column vectors which is closet to ~b.

Let S be the subspace spanned by A’s column vectors.

If ~b is in S, then there exists ~x ∈ S s.t. A~x = ~b.

If ~b is not in S, then A~x is ~b’s projection on S. (why?)

Moreover, ‖~r‖ = min~x ‖A~x − ~b‖.
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Geometrical interpretation of the QR method

The column vectors of Q1 form an orthogonal basis of S. The vector
that ~b projected to S is Q1Q

T
1
~b, where QT

1
~b is the coordinates of the

projected vector in the Q1 coordinate system.

People sometimes call an orthogonal matrix Q a rotation matrix
because Q~x transforms a vector ~x from the Cartesian coordinate to
the Q coordinate system without changing its length ‖Q~x‖ = ‖~x‖.
In a coordinate system, two vectors are the same if their coordinates
are the same.

The coordinates of A~x in the the Q1 coordinate system is
QT

1 A~x = R~x . (why?)

The subspace spanned by the column vectors of Q2 is the null space
of A, denoted N (A),which means any vectors ~v ∈ N (A), A~v = ~0.
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Algebraical interpretation

Let Q = [Q1 Q2 Q3] be a full orthogonal matrix, where Q1 and Q2 are
defined as in the QR method. And we assume P = I .

‖~r‖2 = ‖A~x − ~b‖2

= ‖QT (A~x − ~b)‖2

= ‖QT
1 (A~x − ~b)‖2 + ‖QT

2 (A~x − ~b)‖2 + ‖QT
3 (A~x − ~b)‖2

= ‖QT
1 A~x − QT

1
~b‖2 + ‖QT

2
~b‖2 + ‖QT

3
~b‖2.

We can control ~x and make the first term 0, but we cannot do
anything about the second and the third terms.

By (2), QT
1 A~x = R~x1 + T~x2, where ~x1 ∈ Rk and ~x2 ∈ Rn−k . To

make the first term 0, we can set ~x1 = R−1QT
1
~b and ~x2 = ~0.
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Errors in observations and sampling points

In the linear least square problems, we assume that the samplings,
~a1,~a2, . . .~am, have no bias and the only error comes from the
observations b1, b2, . . . bm. What if the error is contributed by
sampling and observations?

The two dimensional problem: Suppose the sampling points are at
x1, x2, . . . , xm, and the observations are y1, y2, . . . ym.
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Total least square problem for 2D

Total least square: find a line ax + by + c = 0 such that the
summation of the distance of all points (x1, y1), (x2, y2), . . . , (xm, ym)
to this line is minimized.

We need to find a, b, c . To make solution unique, we let√
a2 + b2 = 1.

How to compute the distance from a point to a line?

The distance of a point (xi , yi ) to the line ax + by + c = 0 is
|axi + byi + c |. (why?)

Therefore, the total least squares can be formulated as

min
a,b,c

m∑
i=1

(axi + byi + c)2,

where a2 + b2 = 1.
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How to solve?

Let F (a, b, c) =
∑m

i=1(axi + byi + c)2. You may want to solve this
problem by solving ∇F = 0.

∇F =

 ∂F/∂a
∂F/∂b
∂F/∂c

 =

 ∑m
i=1 2xi (axi + byi + c)∑m
i=1 2yi (axi + byi + c)∑m
i=1 2(axi + byi + c)


But this is not correct, since it has a constraint a2 + b2 = 1.

Fortunately, the condition ∂F/∂c = 0 is still held.

Let ā =
1

m

m∑
i=1

ai and b̄ =
1

m

m∑
i=1

bi . (ā, b̄) is the centroid of data.

(ā, b̄) must be on the solution line. (why?)
If we shift all the points to make (ā, b̄) = (0, 0), then the line equation
becomes ax + by = 0.
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The two dimensional problem example

Let x̃i = xi − x̄ and ỹi = yi − ȳ . The problem becomes

min
a,b

m∑
i=1

(ax̃i + bỹi )
2 s.t. a2 + b2 = 1

Let matrix A =


x1 − x̄ y1 − ȳ
x2 − x̄ y2 − ȳ

:
.

:
.

xm − x̄ ym − ȳ

, and ~v =

(
a
b

)
.

The problem can be expressed as

min
~x ,‖~x‖=1

~xTATA~x .

In statistics, the matrix ATA is the covariance matrix of data
{(xi , yi )}i=1...m.
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How to solve that?

For the constrained optimization problem, the optimality condition is
∇f (~x) = λ∇c(~x), where c(~x) = 0 is the constraint and λ is some
scalar.

Therefore, the optimal solution ~x∗ must satisfy

ATA~x∗ = λ~x∗.

The above equation says the solution is an eigenvector of ATA, but
which one?

A faster way is using the singular value decomposition (SVD)
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Singular value decomposition (SVD)

Theorem (Existence of SVD)

If A is a real m × n matrix, there exist orthogonal matrix U ∈ Rm×m and
V ∈ Rn×n such that

UTAV = diag(σ1, σ2, . . . , σp)

where p = min(m, n) and σ1 ≥ σ2 ≥ . . . ≥ σp ≥ 0.

Theorem (min-max of SVD)

If A is a real m × n matrix with singular values σ1 ≥ σ2 ≥ . . . ≥ σp,
p = min(m, n), then for k = 1, 2, . . . , p,

σk = max
dim(S)=k

min
~x∈S

‖A~x‖
‖~x‖

.

(UNIT 5) Numerical Optimization March 30, 2011 14 / 20



General form of least squares

Let f (~x) =
1

2

m∑
j=1

r2j (~x), in which rj(~x) : Rn → R is a smooth

function, and m ≥ n.

Each rj = φ(~xj − yj) is called a “residual”, where function φ(~x) is
called the model function and yj is an observation obtained at the
sampling point ~xj .

The least square problem is to solve

min
~x

f (~x)

If φ is nonlinear, the problem is called nonlinear least squares.
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Vector function form

Define a vector function ~r(~x) = Rn → Rm.

~r(~x) =


r1(~x)
r2(~x)

:
.

rm(~x)

 .

The Jacobian J(~x) of ~r(~x) is an m × n matrix

J(~x) =


∇~rT1 (~x)
∇~rT2 (~x)

:
.

∇~rTm (~x)

 =


∂r1/∂x1 ∂r1/∂x2 . . . ∂r1/∂xn
∂r2/∂x1 ∂r2/∂x2 . . . ∂r2/∂xn

:
.

:
.

. . .
:
.

∂rm/∂x1 ∂rm/∂x2 . . . ∂rm/∂xn


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Nonlinear least square problems

From the above definition, f (~x) = 1
2~r

T~r .

The gradient of f (~x) is

∇f (~x) =
m∑
j=1

rj(~x)∇rj(~x) = J(~x)T~r(~x)

The Hessian of f (~x) is

∇2f (~x) =
m∑
j=1

∇rj(~x)∇rj(~x)T +
m∑
j=1

rj(~x)∇2rj(~x)

= J(~x)T J(~x) +
m∑
j=1

rj(~x)∇2rj(~x)

If φ is linear, J(~x) = A, ~r(~x) = A~x − ~b, and ∇2f (~x) = ATA.
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Solve nonlinear least squares

We will present two algorithms to solve nonlinear least squares

The Gauss–Newton method

The Levenberg-Marquardt method.

The Gauss–Newton method

Assume the residuals rj(x) are small, and we can approximate
∇2f (x) ≈ JT J.

Use Newton’s method to compute the search direction ~p = −H−1~g .

It goes back to the linear least square method normal equation

(JT J)~p = JT~r .
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The Levenberg-Marquardt method

It is under the trust-region framework. (See note 3.)

The model is quadratic

mk(~p) =
1

2
‖~rk‖2 + ~pT JTk ~rk +

1

2
~pT JTk Jk~p

min
~p

1

2
‖Jk~p +~rk‖2 s.t. ‖~p‖ ≤ ∆k

We will learn how to solve this kind of constrained problem in the rest
of semester. Here are some clues.

If ~z = −(JTk Jk)−1(JTk ~rk) and ‖~z‖ < ∆k , ~p = ~z .
Otherwise , there exists an λ s.t. (JTk Jk + λI )~p = −JTk ~rk and
‖~p‖ = ∆k . The remaining problem is how to find λk .
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Other variations

Weighted least square problem

For a diagonal matrix W , the weighted least squares is to solve

min
~x
‖W (A~x − ~b)‖2.

Lorentzian functions

The square function is sensitive to outliers. Use Lorentzian function

L(~r) = log(1 +~rT~r/σ).

The problem becomes min~x L(A~x − ~b).

Constrained least squares

min
~x
‖A~x − ~b‖2 s.t. ‖B~x + ~d‖ ≤ α.
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