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Linear least squares

e Given samplings a1, a2, ...3dm € R” for observations
b1, bs,...bm € RL, the linear least square method wants to find
o T o ST o .
X=(x1,%0,...,x) €R"st. F(X)=>",(3T%— b;)?is

minimized.

o Let A=

a7 by
=T

a b

2 | eR™XN b= 2 | erm.
57 b

o Let F(X) = ||AX — b||2 = (AX — b)T(AX — b). The problem can be

written as

min F(X)

X
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Normal equation

@ The optimal condition of linear least squares is VF = 0,

VF(X) = AT(AX = b) = 0.

The equation

ATAX = AT b, (1)
is called the normal equation.
Matrix AT A is symmetric positive semi-definite. (why?)
If ATA is SPD, we can solve (1) by the Cholesky decomposition.
If ATA is ill-conditioned, solving (1) directly is not numerically stable.
How to solve (1) if AT A is singular or ill-conditioned?

A best way to solve the normal equation is by the QR method.
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QR method

The QR method for linear least square problem for m > n.

@ Compute A's QR decomposition:

AP = (@1 Q2]< Rix k Tk (n—k)
O(m—k)xk  O(m—k)x(n—k)

where Q = [Q1 Q2] is orthogonal, R is full ranked upper triangular,

and P is a permutation matrix.

—-1nTH
0 5 =p( F10TH)
Om—k

).

Algorithm 1: QR method

()
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Matrix rank and orthogonal matrix

Rank of a matrix: the number of linearly independent rows or
columns of a matrix.

If A's rank is k < n < m, R is a square upper triangular matrix of size
k x k.

A matrix @ is called an orthogonal matrix if QT Q = I, which means
Rt=QT.

In ( ), Q [Ql Q2] is an orthogonal matrix, which implies

Q Q1 =l QF Q2= ln—s, Q] Q= 04 (n—k), and

Q7 Q1 = O(nr)xk-
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Geometrical interpretation of linear least square

@ The problem min ||AX — b|| is to find a linear combination of A's
X

column vectors which is closet to b.
@ Let S be the subspace spanned by A's column vectors.
o If bisin S, then there exists X € S s.t. AX = b.
o If bisnot in S, then AX is b's projection on S. (why?)

Moreover, ||7|| = min [|AX — b||.
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Geometrical interpretation of the QR method

@ The column vectors of Q; form an orthogonal basis of S. The vector
that b projected to S is @1 QlTb, where QlTb is the coordinates of the
projected vector in the Q1 coordinate system.

@ People sometimes call an orthogonal matrix @ a rotation matrix
because QX transforms a vector X from the Cartesian coordinate to
the Q coordinate system without changing its length | QX|| = ||X||.

@ In a coordinate system, two vectors are the same if their coordinates
are the same.

@ The coordinates of AX in the the @1 coordinate system is
Q] AX = RX. (why?)

@ The subspace spanned by the column vectors of @, is the null space
of A, denoted N (A),which means any vectors v € N'(A), AV = 0.
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Algebraical interpretation

Let Q = [Q1 Q2 Q3] be a full orthogonal matrix, where Q; and @, are
defined as in the QR method. And we assume P = /.

7> = A% - b’
= IQT(A% — b)|I?
= [1Q[(AZ = b)|* + | Q] (A% — b)|I* + | Q (A% — b)||?
= [|QAX — Q[ BI* + | Q] BII + | Q BII*.

@ We can control X and make the first term 0, but we cannot do
anything about the second and the third terms.

o By (2), QT AX = RXy + TXa, where X; € RK and X, € R™ k. To
make the first term 0, we can set X1 = R_lQlTb and x> = 0.
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Errors in observations and sampling points

@ In the linear least square problems, we assume that the samplings,
31,32, ...am, have no bias and the only error comes from the
observations by, b, ... b,,. What if the error is contributed by
sampling and observations?

@ The two dimensional problem: Suppose the sampling points are at
X1, X2, ...,Xm, and the observations are y1, yo,... Ym.

Linear least squares Total least squares

March 30, 2011
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Total least square problem for 2D

@ Total least square: find a line ax 4+ by + ¢ = 0 such that the
summation of the distance of all points (x1,y1), (x2,¥2),- - -, (Xm; Ym)
to this line is minimized.

@ We need to find a, b, c. To make solution unique, we let
Val+ b2 =1
@ How to compute the distance from a point to a line?
e The distance of a point (x;, y;) to the line ax + by + c =0 is
|ax,- + by; + C|. (Why?)
@ Therefore, the total least squares can be formulated as

m
min > (ax; + by; + ¢)?,

a7b7c .
i=1

where 2% + b% = 1.
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How to solve?

o Let F(a,b,c) =" (ax; + by; + c)?. You may want to solve this
problem by solving VF = 0.

OF J0a > 2xi(ax; + by; + ¢)
VFE=| 0F/0b | = | > 2yi(ax; + byi + ¢)
OF /Oc >oim12(axi + byi + ¢)

@ But this is not correct, since it has a constraint a2 + b% = 1.
e Fortunately, the condition F /0c = 0 is still held.

1 & S _
o Let 3= - ;a; and b= P ’z:; b;. (3, b) is the centroid of data.

o (3,b) must be on the solution line. (why?)
o If we shift all the points to make (3, b) = (0,0), then the line equation
becomes ax + by = 0.
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The two dimensional problem example

o Let X, = x; — X and ¥; = y; — y. The problem becomes

m
i % + byi)? st a®+ b7 =1
rgr;(ax,—i- yi)" s.t. a” +

@ Let matrix A = Rmxo 2Ty ,andf/z(Z).

Xm — X Ym - y
@ The problem can be expressed as

“min XTATAR.
%|I%1=1

@ In statistics, the matrix AT A is the covariance matrix of data

{(Xh}/i)}i:l.,.m-
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How to solve that?

@ For the constrained optimization problem, the optimality condition is
V£(X) = AVc(X), where ¢(X) = 0 is the constraint and A is some
scalar.

@ Therefore, the optimal solution X* must satisfy
ATAZ* = X"

@ The above equation says the solution is an eigenvector of AT A, but
which one?

o A faster way is using the singular value decomposition (SVD)
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Singular value decomposition (SVD)

Theorem (Existence of SVD)

If A'is a real m X n matrix, there exist orthogonal matrix U € R™*™ and
V € R"™" such that

UTAV = diag(a1, 09, . . .,0p)

where p = min(m, n) and 01 > 02 > ... > 0, > 0.

Theorem (min-max of SVD)

If Ais a real m x n matrix with singular values o1 > 02 > ... > 0y,
p = min(m, n), then for k =1,2,...,p,

o A%
k= max min ———.
dim(S)=k xS ||X]|
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General form of least squares

1 m
o Let f(X) = 5 Z rJ-2(>_<'), in which r;(X) : R” — R is a smooth
j=1

function, and m > n.

e Each rj = ¢(X; — y;) is called a “residual”, where function ¢(X) is
called the model function and y; is an observation obtained at the
sampling point X;.

@ The least square problem is to solve

min f(X)

@ If ¢ is nonlinear, the problem is called nonlinear least squares.
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Vector function form

e Define a vector function r(X) = R" — R™.

@ The Jacobian J(X) of F(X) is an m x n matrix

T [ On/0x1 0On/0xx ... On/0x, |
vilT()_i) On/dx1 0n/dxx ... Orn/Ox,
J(%) = vr,) (%) _
viE(X) ' ' '
| Orm/Ox1 Orm/Ox2 ... Ofm/0xp |
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Nonlinear least square problems

e From the above definition, f(X) =
@ The gradient of f(X) is

@ The Hessian of f(X) is
f(%) = Z Vr(R)Vr(x)" + Z r(X)V2r(x)

= RTIR Y HAV()

j=1

o If ¢ is linear, J(X) = A, 7(X) = AX — b, and V2f(X) = ATA.
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Solve nonlinear least squares

We will present two algorithms to solve nonlinear least squares
@ The Gauss—Newton method

@ The Levenberg-Marquardt method.

The Gauss—Newton method

@ Assume the residuals rj(x) are small, and we can approximate
V2f(x) ~ JTJ.

@ Use Newton's method to compute the search direction p = —H~!g.

@ It goes back to the linear least square method normal equation

UTHp=JT%
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The Levenberg-Marquardt method

@ It is under the trust-region framework. (See note 3.)

@ The model is quadratic

1

25TJ;<TJM3

- 1. - S
mi(B) = S|IFll> + BT I e +
2

D S .
mﬁln EHJkP + 7l st 18] < Ax

@ We will learn how to solve this kind of constrained problem in the rest
of semester. Here are some clues.
o If Z=—(JIJ) X)) and || Z|| < Ak, B=Z.
o Otherwise , there exists an A s.t. (J] Jk + A)p = —J[ 7 and
IIB|| = Ak. The remaining problem is how to find A.
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Other variations

Weighted least square problem

For a diagonal matrix W, the weighted least squares is to solve

min | W(A% — B
X
Lorentzian functions

@ The square function is sensitive to outliers. Use Lorentzian function

L(F) = log(1 + FT7/o).

o The problem becomes ming L(AX — b).

v
Constrained least squares

min |AX — b||? s.t. ||BX + d|| < a.
X
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