
Numerical Optimization
Unit 4: Quasi-Newton and Conjugate Gradient Methods

Che-Rung Lee

Scribe:

May 26, 2011

(UNIT 4) Numerical Optimization May 26, 2011 1 / 18



Three problems of Newton’s method

Three problems of Newton’s method:

1 Hessian matrix H may not be positive definite.

2 Hessian matrix H is expensive to compute.

3 The system p⃗ = −H−1g⃗ is expensive to solve.

We want to discuss methods to solve the second and the third problems.
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Secant equation

Recall that in the one dimensional optimization problem , the secant

method approximate f ′′(xk) by h̃k =
f ′(xk)− f ′(xk−1)

xk − xk−1
and we use h̃k

in the secant’s method.

f ′(xk)− f ′(xk−1) = h̃k(xk − xk−1) = h̃kpk .

In multivariable optimization, we want to find an “approximate”
Hessian matrix Bk such that

∇fk+1 −∇fk = Bk p⃗k . (1)

The above equation is called the “secant equation” in multivariable
function.
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The SR1 update

Bk and Bk−1 should be “similar”: the symmetric rank 1 (SR1)
update: where �k = +1 or −1 and u⃗ is a vector.

Bk = Bk−1 + �k u⃗k u⃗T
k , (2)

What is u⃗?
Let y⃗k =∇fk−∇fk−1 =Bk p⃗k =(Bk−1+�k u⃗u⃗T )p⃗k =Bk−1p⃗k +�k u⃗u⃗T p⃗k .
y⃗k − Bk−1p⃗k = (�u⃗T p⃗k) ⋅ u⃗ ⇒ u⃗ is parallel to y⃗k − Bk−1p⃗k .
Let u⃗ = �(y⃗k − Bk−1p⃗k). Using (1) and (2), one can derive

� = sign(y⃗T
k p⃗k − p⃗T

k Bk−1p⃗k) (3)

� = ±(y⃗T
k p⃗k − p⃗T

k Bk−1p⃗k)−1/2 (4)

By substituting (3) and (4) back to (2), one can show that

Bk = Bk−1 + � ⋅ u⃗u⃗T (5)

= Bk−1 +
(y⃗k − Bk−1p⃗k)(y⃗k − Bk−1p⃗k)T

(y⃗k − Bk−1p⃗k)T p⃗k
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The Sherman—Morrison—Woodbury formula

What we really need is not an approximation to Hk , but an
approximation to H−1k .

If we know B−1k−1, and Bk = Bk−1 + �u⃗u⃗T , can we compute B−1k
efficiently?

The Sherman - Morrison - Woodbury formula.

Â = A + a⃗b⃗T

Â−1 = A−1 − A−1a⃗b⃗TA−1

1 + b⃗TA−1a⃗

Thus, the formula of SR1 update is (see note 3 for details.)

B−1k = B−1k−1 +
(p⃗k − B−1k−1y⃗k)(p⃗k − B−1k y⃗k)T

y⃗T
k B−1k−1y⃗k − y⃗T

k p⃗k
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Numerical properties of the SR1 update

Convergence for a quadratic function

Suppose f (x⃗) = b⃗T x⃗ + 1
2 x⃗TAx⃗ and A is symmetric positive definite. Then

for any starting point x⃗0 and any starting H0, SR1 converges to the
minimizer in at most n steps, where n is the problem size, provided that
(p⃗k − B−1k y⃗k)T y⃗k ∕= 0 for all k .

Problems of the SR1 method

1 (y⃗k − Bk p⃗k)T p⃗k may be 0 ⇒ Just use Bk = Bk−1.

2 Bk may be indefinite ⇒ Use BFGS.
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BFGS

The BFGS method (1970) (Broyden, Fletcher, Goldtarb, Shanno)

BFGS can keep Bk symmetric positive definite with the curvature
condition:

y⃗k = B⃗k p⃗k ⇒ p⃗T
k B⃗k p⃗k = p⃗T

k y⃗k > 0

We need a rank 2 update

B−1k = (I − �k p⃗k y⃗T
k )B−1k−1(I − �k y⃗k p⃗T

k ) + �k p⃗k p⃗T
k where �k =

1

y⃗T
k p⃗k

Theorem (Convergence of BFGS)

Suppose f = ℝn → ℝ is twice continuously differentiable. Consider the
iteration x⃗k+1 = x⃗k + p⃗k where p⃗k = −B−1k ∇fk . If {x⃗k} converges to x⃗∗

s.t. ∇f (x⃗∗) = 0 and ∇2f (x⃗∗) is positive definite, then {x⃗k} converges

superlinearly if and only if lim
k→∞

∥∇fk +∇2fk p⃗k∥
∥p⃗k∥

= 0
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Review of the quadratic model

Consider a quadratic function

f (x⃗) =
1

2
x⃗TAx⃗ − x⃗T b⃗ + c

To find the optimal solution of f (x⃗) is equivalent to find
∇f (x⃗) = Ax⃗ − b⃗ = 0, which is to solve the linear system Ax⃗ = b⃗.

We call r⃗ = b⃗ − Ax⃗ the residual for the linear system Ax⃗ = b⃗. The
smaller ∥⃗r∥ is, the better solution x⃗ is.

r⃗ = b⃗ − Ax⃗ = Ax⃗ ∗ − Ax⃗

∥x⃗ ∗ − x⃗∥ = ∥A−1r⃗∥ ≤ ∥A−1∥∥⃗r∥

= ∥A−1∥∥A∥ ∥⃗r∥
∥A∥

= �(A)
∥⃗r∥
∥A∥
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The steepest descent directions

Recall the steepest descent method: p⃗k = −∇f (x⃗) = b⃗ − Ax⃗ and

�k =
−p⃗T

k g⃗k

p⃗T
k Ak p⃗k

.

From homework 2, the trace of {xk} shows a zigzag patten.

Relation of p⃗k and p⃗k+1: Since x⃗k+1 = x⃗k + �k p⃗k ,

p⃗k+1 = −∇f (x⃗k+1) = b⃗ − A(x⃗k + �k p⃗k) = b⃗ − Ax⃗k − �kAp⃗k

= p⃗k − �kAp⃗k

p⃗T
k p⃗k+1 = p⃗T

k (p⃗k − �kAp⃗k) = p⃗T
k p⃗k − �k p⃗T

k Ap⃗k = 0
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Conjugate gradient method (CG)

A symmetric positive definite matrix can define an “inner product”:

⟨⃗a, b⃗⟩A ≡ a⃗TAb⃗.

Vector a⃗, b⃗ are called A-conjugate or A-orthogonal if ⟨⃗a, b⃗⟩A = 0

Let p⃗k+1 = −r⃗k+1 + �k p⃗k . We want p⃗k+1 and p⃗k to be A-conjugate.

⟨p⃗k+1, p⃗k⟩A = p⃗T
k A(−r⃗k+1 + �k p⃗k) = −p⃗T

k A⃗rk+1 + �k p⃗T
k Ap⃗k = 0.

⇒ �k =
p⃗T
k A⃗rk+1

p⃗T
k Ap⃗k

Use the same �k =
−p⃗T

k g⃗k

p⃗T
k Ak p⃗k

as the steepest descent method.

To save one matrix-vector multiplication, residuals can be updated as

r⃗k+1 = b⃗ − Ax⃗k+1 = b⃗ − A(x⃗k + �k p⃗k) = r⃗k − �kAp⃗k
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The conjugate gradient algorithm

Put everything together...

The conjugate gradient algorithm

1 Given x⃗0. Let p⃗0 = b⃗ − Ax⃗0 and r⃗0 = p⃗0.

2 For k = 0, 1, 2, . . . until ∥⃗rk∥ ≤ �

�k =
p⃗T
k r⃗k

p⃗T
k Ap⃗k

x⃗k+1 = x⃗k + �k p⃗k

r⃗k+1 = r⃗k − �kAp⃗k

�k =
r⃗Tk+1Apk

p⃗T
k Ap⃗k

p⃗k+1 = −r⃗k+1 + �k p⃗k

(UNIT 4) Numerical Optimization May 26, 2011 11 / 18



Example

f (x⃗) =
1

2
x⃗T

(
1 0
0 9

)
x⃗ and x⃗0 =

(
9
1

)
, in which

A =

(
1 0
0 9

)
, b⃗ =

(
0
0

)
Initially,

p⃗0 = b⃗ − Ax⃗0 =

(
−9
−9

)
= r⃗0.

The first iteration,

Ap⃗0 =

(
−9
−81

)
�0 =

2× 81

81 + 9× 81
=

1

5

x⃗1 =

(
9
1

)
+

1

5

(
−9
−9

)
=

(
7.2
−0.8

)
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Example–continue

r⃗1 =

(
−9
−9

)
− 1

5

(
−9
−81

)
=

(
−7.2
7.2

)

�1 =
7.22 × 2

92 × 2
=

(
7.2

9

)2

= 0.64

p⃗1 =

(
−7.2
7.2

)
+ 0.8× 0.8

(
−9
−9

)
=

(
−1.8× 7.2
0.2× 7.2

)
The second iteration

�1 =
7.22 × 2

12.962 + 12.96× 1.44
=

1

1.8

x⃗2 =

(
7.2
−0.8

)
+

1

1.8

(
−12.96

1.44

)
=

(
0
0

)
r⃗2 =

(
−7.2
7.2

)
− 1

1.8

(
−1.8× 7.2
0.2× 7.2

)
=

(
0
0

)
.
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Properties of the CG

Trace of the example (compared with Steepest-descent direction and
Newton’s direction.)

Theorem (Convergence)

For any x⃗ ∈ ℝn, if A has m distinct eigenvalues, the CG will terminate at
the solution at most m iterations. Moreover, if A has eigenvalues
�1 ≤ �2 ≤ ⋅ ⋅ ⋅�n,

∥x⃗k+1 − x⃗ ∗∥2A ≤
(
�n−k − �1
�n−k + �1

)2

∥x⃗0 − x⃗ ∗∥2A
(UNIT 4) Numerical Optimization May 26, 2011 14 / 18



Preconditioned CG (PCG)

The convergence of the CG can be very small if If �(A)−1 = �min
�max

is
small.

If we can find a matrix M such that the ratio of the smallest
eigenvalue and the largest eigenvalue of MA ≈ I , then the
convergence can be faster.

The original problem Ax⃗ = b⃗ becomes MAx⃗ = Mb⃗.

x⃗ = (MA)−1Mb⃗ = A−1M−1Mb⃗ = A−1b⃗
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Truncated Newton method

1 Hessian matrix A may fail to be positive definite.

2 The linear system Ax⃗ = b⃗ need not be solved “exactly”. (Recall the
modified Newton’s method.)

3 Therefore, we can stop the iterations as soon as we found the
indefiniteness of A or when ∥⃗r∥ < �.

(UNIT 4) Numerical Optimization May 26, 2011 16 / 18



Hessian free CG

When the problem is large, generating and storing matrix A are
expensive. (Matrix A may not be sparse in many cases.)

We don’t really need the Hessian matrix A explicitly. What we need is
Av⃗ .

Matrix A is a special matrix ∇2fk . Recall the definition of the
directional derivative (See note 2),

Av⃗ = ∇2fk v⃗ ≈ ∇f (x⃗k + hv⃗)−∇f (x⃗k)

h

for some small enough h.

Other methods that can solve large-scale problems include Limited
memory BFGS, etc.
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Nonlinear CG

When the problem is not quadratic, similar methods can be used for
the nonlinear optimization.

Two differences:
1 Step length �k is computed by the line search algorithm.
2 The formula of computing �k .

Ex: The Fletcher-Reeves method, �k =
∇f Tk+1∇fk+1

∇f Tk ∇fk
.

Ex: The Polak-Ribière method, �k =
∇f Tk+1(∇fk+1 −∇fk)

∇f Tk ∇fk
.
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