Numerical Optimization

Unit 4: Quasi-Newton and Conjugate Gradient Methods

Che-Rung Lee

~
Scribe: | B

May 26, 2011

Numerical Optimization May 26, 2011 1/18



Three problems of Newton's method

Three problems of Newton's method:

© Hessian matrix H may not be positive definite.
@ Hessian matrix H is expensive to compute.

@ The system p = —H ! is expensive to solve.

We want to discuss methods to solve the second and the third problems.
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Secant equation

@ Recall that in the one dimensional optimization problem , the secant
f(xx) — f'(xk—1)

Xk — Xk—1

method approximate ”(xx) by hyx = and we use hy

in the secant’'s method.
F/(xk) — F'(xk-1) = he(xk — xk—1) = hpr.

@ In multivariable optimization, we want to find an “approximate”
Hessian matrix By such that

Vi1 — Vi = Bypk. (1)

@ The above equation is called the “secant equation” in multivariable
function.
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The SR1 update

@ By and By_; should be “similar”: the symmetric rank 1 (SR1)
update: where o = +1 or —1 and @ is a vector.
By = Bk—1 + okl , (2)

o What is i?
o Let Yk =VHi—Vfi_1=Bkpx=(Bk_1+0uiii")px=Br_1Px+0oxit" px.
o Vi — Bx_1Ppx = (0" Px) - i = i is parallel to yi — By_1pk.
o Let 4= 06(yk — Bk—1Pk). Using (1) and (2), one can derive
o = sign(y{ Bk — B{ Br—1Px) 3)
§ = (] Px— By Br—1b) 3 (4)

e By substituting (3) and (4) back to (2), one can show that
By = Bix_1+o- gu’ (5)
(Vk — Bi—1k) (% — Br—1P) "
(V& — Br—1Pk) " Bx

= Bi-1+
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The Sherman—Morrison—Woodbury formula

@ What we really need is not an approximation to Hy, but an
approximation to Hk_l.

T can we compute Bk_1

o If we know Bk_fl, and By = Bx_1 +olu
efficiently?

@ The Sherman - Morrison - Woodbury formula.

A = A+3bT
A1 _ a1 ATHETAT
1+bTA-13

@ Thus, the formula of SR1 update is (see note 3 for details.)

(Bx — B 1 7k)(Bx — B ') T

T -1 = T =
VI B vk — Y Br

1 1
B, =B+
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Numerical properties of the SR1 update

Convergence for a quadratic function

Suppose f(X) = b7 X + 1%T A% and A is symmetric positive definite. Then
for any starting point Xy and any starting Hy, SR1 converges to the
minimizer in at most n steps, where n is the problem size, provided that
(Br — B k) Ty # 0 for all k.

Problems of the SR1 method
(1] (yk = Bkﬁk)T,Bk may be 0 = Just use By = By_1.
@ Bx may be indefinite = Use BFGS.

| N\
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BFGS

The BFGS method (1970) (Broyden, Fletcher, Goldtarb, Shanno)
@ BFGS can keep By symmetric positive definite with the curvature
condition:
Vi = BiPx = B BiPx = By Y > 0
@ We need a rank 2 update

Bt = (I — pkBid ) By (I — pkVkPi ) + pkPrPr where py = T

Theorem (Convergence of BFGS)

Suppose f = R" — R is twice continuously differentiable. Consider the
iteration X141 = Xk + Px where py = —Bk_Ika. If {Xx} converges to X*
s.t. VF(X*) = 0 and V2f(%*) is positive definite, then {X;} converges

fi 2fB
superlinearly if and only if lim IV +_’V kP =0
=es 1Bk |
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Review of the quadratic model

@ Consider a quadratic function
> 11, o172
f(X) = 5% AX—X'"b+c

o To find the optimal solution of f(X) is equivalent to find
V£ (X) = AX — b =0, which is to solve the linear system AX = b.

o We call 7= b — AX the residual for the linear system AX = b. The
smaller ||7]| is, the better solution X is.

7 = b— AR = AX* — AR
I* =% = AT < A7

JRETIN [ 171
1A~ 1AL 37 = (A ]
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The steepest descent directions

o Recall the steepest descent method: g = —V£(X) = b — A% and
_ —Bl &«
Qg = —F = -
Py APk
@ From homework 2, the trace of {xx} shows a zigzag patten.

0 1 2 3 4 5 6
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Conjugate gradient method (CG)

@ A symmetric positive definite matrix can define an “inner product”:
(3,b)a = 3" Ab.
@ Vector 3, b are called A-conjugate or A-orthogonal if (3, B)A =0
o Let P11 = —Trki1 + BkPx- We want piy1 and px to be A-conjugate.
(Pr+1, Br)a = By A(—Fis1 + BiPr) = —Py Afis1 + BBy APk = 0.
Bl Afii1
= Bk = T Ao
Py APk
— Py Bk
Bl AwPr
@ To save one matrix-vector multiplication, residuals can be updated as

@ Use the same ay = as the steepest descent method.

k1 = b — AXiy1 = b — A(Rk + auPr) = T — i Apk
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The conjugate gradient algorithm

Put everything together...

O Given Xp. Let gy = b— AXy and rp = po.

@ For k=0,1,2,... until ||rk]| <e

ap =

Xk+1 =

Feel =
B =

Prt1 =

ST >
Py Tk

—»T —

P APk

X + P

ik — AP
?,L_lApk
B ABk

—Tk+1 + BrPrk

The conjugate gradient algorithm
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ol (1 0, - (9 . .
f(X)_EX (O 9)xandxo—<1>,|nwh|ch

Initially,

The first iteration,

. 2x81 1
0= 81r9xasl

() () ()
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Example—continue
L (-9 1/ -9\ [ -72
1=\ -9 ) 5\ 81 )7\ 72

7.22 %2 7.2\2
= — — pr— . 4
h1="g55 ( 9 ) 06
L[ -T2 -9\ [ -18x72
”1_( 7.2 >+0‘8X0'8( -9 ) _< 0.2x 7.2 )
The second iteration

_ 7.22 %2 _
12062 +12.96 x 1.44

1

18
L (72 ), 1 (1206 _(0
2=\ _o8 18\ 144 ) Lo
L (=72 1 [ -18x72\ [0
2=\ 72 18\ 02x72 ) Lo )
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Properties of the CG

Trace of the example (compared with Steepest-descent direction and
Newton's direction.)

Theorem (Convergence)

For any X € R", if A has m distinct eigenvalues, the CG will terminate at

the solution at most m iterations. Moreover, if A has eigenvalues
A< A<y,

- = )\ _>\1 2 — = %
e -2l < (L) o= %15

Numerical Optimization
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Preconditioned CG (PCG)

Amin

is

@ The convergence of the CG can be very small if If K(A)™! = S i
small.

o If we can find a matrix M such that the ratio of the smallest
eigenvalue and the largest eigenvalue of MA = [, then the
convergence can be faster.

@ The original problem AX = b becomes MAX = Mb.

X=(MA)*Mb=A"M"Mb=A"'h
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Truncated Newton method

@ Hessian matrix A may fail to be positive definite.

@ The linear system AX = b need not be solved “exactly”. (Recall the
modified Newton's method.)

© Therefore, we can stop the iterations as soon as we found the
indefiniteness of A or when ||7]| < e.
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Hessian free CG

@ When the problem is large, generating and storing matrix A are
expensive. (Matrix A may not be sparse in many cases.)

@ We don't really need the Hessian matrix A explicitly. What we need is
Av.

@ Matrix A is a special matrix V2f,. Recall the definition of the
directional derivative (See note 2),

V(X + hv) — V(%)
h

AV = V2V ~

for some small enough h.

@ Other methods that can solve large-scale problems include Limited
memory BFGS, etc.
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Nonlinear CG

@ When the problem is not quadratic, similar methods can be used for
the nonlinear optimization.
e Two differences:

© Step length ay is computed by the line search algorithm.
@ The formula of computing (.

LV
@ Ex: The Fletcher-Reeves method, Bk = %
T J—
o Ex: The Polak-Ribiere method, 8y = kaH(Vf?_l ka)_
V£V
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