Numerical Optimization

Unit 4：Quasi－Newton and Conjugate Gradient Methods

Che－Rung Lee

Scribe：周宗毅

May 26， 2011

Three problems of Newton's method

Three problems of Newton's method:

(1) Hessian matrix H may not be positive definite.
(2) Hessian matrix H is expensive to compute.
(3) The system $\vec{p}=-H^{-1} \vec{g}$ is expensive to solve.

We want to discuss methods to solve the second and the third problems.

Secant equation

- Recall that in the one dimensional optimization problem, the secant method approximate $f^{\prime \prime}\left(x_{k}\right)$ by $\tilde{h}_{k}=\frac{f^{\prime}\left(x_{k}\right)-f^{\prime}\left(x_{k-1}\right)}{x_{k}-x_{k-1}}$ and we use \tilde{h}_{k} in the secant's method.

$$
f^{\prime}\left(x_{k}\right)-f^{\prime}\left(x_{k-1}\right)=\tilde{h}_{k}\left(x_{k}-x_{k-1}\right)=\tilde{h}_{k} p_{k} .
$$

- In multivariable optimization, we want to find an "approximate" Hessian matrix B_{k} such that

$$
\begin{equation*}
\nabla f_{k+1}-\nabla f_{k}=B_{k} \vec{p}_{k} \tag{1}
\end{equation*}
$$

- The above equation is called the "secant equation" in multivariable function.

The SR1 update

- B_{k} and B_{k-1} should be "similar": the symmetric rank 1 (SR1) update: where $\sigma_{k}=+1$ or -1 and \vec{u} is a vector.

$$
\begin{equation*}
B_{k}=B_{k-1}+\sigma_{k} \vec{u}_{k} \vec{u}_{k}^{T} \tag{2}
\end{equation*}
$$

- What is \vec{u} ?
- Let $\vec{y}_{k}=\nabla f_{k}-\nabla f_{k-1}=B_{k} \vec{p}_{k}=\left(B_{k-1}+\sigma_{k} \vec{u} \vec{u}^{T}\right) \vec{p}_{k}=B_{k-1} \vec{p}_{k}+\sigma_{k} \vec{u} \vec{u}^{T} \vec{p}_{k}$.
- $\vec{y}_{k}-B_{k-1} \vec{p}_{k}=\left(\sigma \vec{u}^{\top} \vec{p}_{k}\right) \cdot \vec{u} \Rightarrow \vec{u}$ is parallel to $\vec{y}_{k}-B_{k-1} \vec{p}_{k}$.
- Let $\vec{u}=\delta\left(\vec{y}_{k}-B_{k-1} \vec{p}_{k}\right)$. Using (1) and (2), one can derive

$$
\begin{align*}
\sigma & =\operatorname{sign}\left(\vec{y}_{k}^{T} \vec{p}_{k}-\vec{p}_{k}^{T} B_{k-1} \vec{p}_{k}\right) \tag{3}\\
\delta & = \pm\left(\vec{y}_{k}^{T} \vec{p}_{k}-\vec{p}_{k}^{T} B_{k-1} \vec{p}_{k}\right)^{-1 / 2} \tag{4}
\end{align*}
$$

- By substituting (3) and (4) back to (2), one can show that

$$
\begin{align*}
B_{k} & =B_{k-1}+\sigma \cdot \vec{u} \vec{u}^{T} \tag{5}\\
& =B_{k-1}+\frac{\left(\vec{y}_{k}-B_{k-1} \vec{p}_{k}\right)\left(\vec{y}_{k}-B_{k-1} \vec{p}_{k}\right)^{T}}{\left(\vec{y}_{k}-B_{k-1} \vec{p}_{k}\right)^{T} \vec{p}_{k}}
\end{align*}
$$

The Sherman-Morrison-Woodbury formula

- What we really need is not an approximation to H_{k}, but an approximation to H_{k}^{-1}.
- If we know B_{k-1}^{-1}, and $B_{k}=B_{k-1}+\sigma \vec{u} \vec{u}^{T}$, can we compute B_{k}^{-1} efficiently?
- The Sherman - Morrison - Woodbury formula.

$$
\begin{aligned}
\hat{A} & =A+\vec{a} \vec{b}^{T} \\
\hat{A}^{-1} & =A^{-1}-\frac{A^{-1} \vec{a}^{T} A^{-1}}{1+\vec{b}^{\top} A^{-1} \vec{a}}
\end{aligned}
$$

- Thus, the formula of SR1 update is (see note 3 for details.)

$$
B_{k}^{-1}=B_{k-1}^{-1}+\frac{\left(\vec{p}_{k}-B_{k-1}^{-1} \vec{y}_{k}\right)\left(\vec{p}_{k}-B_{k}^{-1} \vec{y}_{k}\right)^{T}}{\vec{y}_{k}^{\top} B_{k-1}^{-1} \vec{y}_{k}-\vec{y}_{k}^{T} \vec{p}_{k}}
$$

Numerical properties of the SR1 update

Convergence for a quadratic function

Suppose $f(\vec{x})=\vec{b}^{T} \vec{x}+\frac{1}{2} \vec{x}^{\top} A \vec{x}$ and A is symmetric positive definite. Then for any starting point \vec{x}_{0} and any starting H_{0}, SR1 converges to the minimizer in at most n steps, where n is the problem size, provided that $\left(\vec{p}_{k}-B_{k}^{-1} \vec{y}_{k}\right)^{T} \vec{y}_{k} \neq 0$ for all k.

Problems of the SR1 method

(1) $\left(\vec{y}_{k}-B_{k} \vec{p}_{k}\right)^{T} \vec{p}_{k}$ may be $0 \Rightarrow$ Just use $B_{k}=B_{k-1}$.
(2) B_{k} may be indefinite \Rightarrow Use BFGS.

BFGS

The BFGS method (1970) (Broyden, Fletcher, Goldtarb, Shanno)

- BFGS can keep B_{k} symmetric positive definite with the curvature condition:

$$
\vec{y}_{k}=\vec{B}_{k} \vec{p}_{k} \Rightarrow \vec{p}_{k}^{T} \vec{B}_{k} \vec{p}_{k}=\vec{p}_{k}^{T} \vec{y}_{k}>0
$$

- We need a rank 2 update

$$
B_{k}^{-1}=\left(I-\rho_{k} \vec{p}_{k} \vec{y}_{k}^{T}\right) B_{k-1}^{-1}\left(I-\rho_{k} \vec{y}_{k} \vec{p}_{k}^{T}\right)+\rho_{k} \vec{p}_{k} \vec{p}_{k}^{T} \text { where } \rho_{k}=\frac{1}{\vec{y}_{k}^{T} \vec{p}_{k}}
$$

Theorem (Convergence of BFGS)

Suppose $f=\mathbb{R}^{n} \rightarrow \mathbb{R}$ is twice continuously differentiable. Consider the iteration $\vec{x}_{k+1}=\vec{x}_{k}+\vec{p}_{k}$ where $\vec{p}_{k}=-B_{k}^{-1} \nabla f_{k}$. If $\left\{\vec{x}_{k}\right\}$ converges to \vec{x}^{*} s.t. $\nabla f\left(\vec{x}^{*}\right)=0$ and $\nabla^{2} f\left(\vec{x}^{*}\right)$ is positive definite, then $\left\{\vec{x}_{k}\right\}$ converges superlinearly if and only if $\lim _{k \rightarrow \infty} \frac{\left\|\nabla f_{k}+\nabla^{2} f_{k} \vec{p}_{k}\right\|}{\left\|\vec{p}_{k}\right\|}=0$

Review of the quadratic model

- Consider a quadratic function

$$
f(\vec{x})=\frac{1}{2} \vec{x}^{T} A \vec{x}-\vec{x}^{T} \vec{b}+c
$$

- To find the optimal solution of $f(\vec{x})$ is equivalent to find $\nabla f(\vec{x})=A \vec{x}-\vec{b}=0$, which is to solve the linear system $A \vec{x}=\vec{b}$.
- We call $\vec{r}=\vec{b}-A \vec{x}$ the residual for the linear system $A \vec{x}=\vec{b}$. The smaller $\|\vec{r}\|$ is, the better solution \vec{x} is.

$$
\begin{aligned}
\vec{r} & =\vec{b}-A \vec{x}=A \vec{x}^{*}-A \vec{x} \\
\left\|\vec{x}^{*}-\vec{x}\right\| & =\left\|A^{-1} \vec{r}\right\| \leq\left\|A^{-1}\right\|\|\vec{r}\| \\
& =\left\|A^{-1}\right\|\|A\| \frac{\|\vec{r}\|}{\|A\|}=\kappa(A) \frac{\|\vec{r}\|}{\|A\|}
\end{aligned}
$$

The steepest descent directions

- Recall the steepest descent method: $\vec{p}_{k}=-\nabla f(\vec{x})=\vec{b}-A \vec{x}$ and

$$
\alpha_{k}=\frac{-\vec{p}_{k}^{T} \vec{g}_{k}}{\vec{p}_{k}^{T} A_{k} \vec{p}_{k}} .
$$

- From homework 2, the trace of $\left\{x_{k}\right\}$ shows a zigzag patten.

Conjugate gradient method (CG)

- A symmetric positive definite matrix can define an "inner product":

$$
\langle\vec{a}, \vec{b}\rangle_{A} \equiv \vec{a}^{T} A \vec{b}
$$

- Vector \vec{a}, \vec{b} are called A-conjugate or A-orthogonal if $\langle\vec{a}, \vec{b}\rangle_{A}=0$
- Let $\vec{p}_{k+1}=-\vec{r}_{k+1}+\beta_{k} \vec{p}_{k}$. We want \vec{p}_{k+1} and \vec{p}_{k} to be A-conjugate.

$$
\left\langle\vec{p}_{k+1}, \vec{p}_{k}\right\rangle_{A}=\vec{p}_{k}^{T} A\left(-\vec{r}_{k+1}+\beta_{k} \vec{p}_{k}\right)=-\vec{p}_{k}^{T} A \vec{r}_{k+1}+\beta_{k} \vec{p}_{k}^{T} A \vec{p}_{k}=0 .
$$

$$
\Rightarrow \beta_{k}=\frac{\vec{p}_{k}^{T} A \vec{r}_{k+1}}{\vec{p}_{k}^{T} A \vec{p}_{k}}
$$

- Use the same $\alpha_{k}=\frac{-\vec{p}_{k}^{T} \vec{g}_{k}}{\vec{p}_{k}^{T} A_{k} \vec{p}_{k}}$ as the steepest descent method.
- To save one matrix-vector multiplication, residuals can be updated as

$$
\vec{r}_{k+1}=\vec{b}-A \vec{x}_{k+1}=\vec{b}-A\left(\vec{x}_{k}+\alpha_{k} \vec{p}_{k}\right)=\vec{r}_{k}-\alpha_{k} A \vec{p}_{k}
$$

The conjugate gradient algorithm

Put everything together...
The conjugate gradient algorithm
(1) Given \vec{x}_{0}. Let $\vec{p}_{0}=\vec{b}-A \vec{x}_{0}$ and $\vec{r}_{0}=\vec{p}_{0}$.
(2) For $k=0,1,2, \ldots$ until $\left\|\vec{r}_{k}\right\| \leq \epsilon$

$$
\begin{aligned}
\alpha_{k} & =\frac{\vec{p}_{k}^{T} \vec{r}_{k}}{\vec{p}_{k}^{T} A \vec{p}_{k}} \\
\vec{x}_{k+1} & =\vec{x}_{k}+\alpha_{k} \vec{p}_{k} \\
\vec{r}_{k+1} & =\vec{r}_{k}-\alpha_{k} A \vec{p}_{k} \\
\beta_{k} & =\frac{\vec{r}_{k+1}^{T} A p_{k}}{\vec{p}_{k}^{T} A \vec{p}_{k}} \\
\vec{p}_{k+1} & =-\vec{r}_{k+1}+\beta_{k} \vec{p}_{k}
\end{aligned}
$$

Example

$$
\begin{array}{r}
f(\vec{x})=\frac{1}{2} \vec{x}^{T}\left(\begin{array}{ll}
1 & 0 \\
0 & 9
\end{array}\right) \vec{x} \text { and } \vec{x}_{0}=\binom{9}{1} \text {, in which } \\
A=\left(\begin{array}{ll}
1 & 0 \\
0 & 9
\end{array}\right), \vec{b}=\binom{0}{0}
\end{array}
$$

Initially,

$$
\vec{p}_{0}=\vec{b}-A \vec{x}_{0}=\binom{-9}{-9}=\vec{r}_{0} .
$$

The first iteration,

$$
\begin{gathered}
A \vec{p}_{0}=\binom{-9}{-81} \\
\alpha_{0}=\frac{2 \times 81}{81+9 \times 81}=\frac{1}{5} \\
\vec{x}_{1}=\binom{9}{1}+\frac{1}{5}\binom{-9}{-9}=\binom{7.2}{-0.8}
\end{gathered}
$$

Example-continue

$$
\begin{gathered}
\vec{r}_{1}=\binom{-9}{-9}-\frac{1}{5}\binom{-9}{-81}=\binom{-7.2}{7.2} \\
\beta_{1}=\frac{7.2^{2} \times 2}{9^{2} \times 2}=\left(\frac{7.2}{9}\right)^{2}=0.64 \\
\vec{p}_{1}=\binom{-7.2}{7.2}+0.8 \times 0.8\binom{-9}{-9}=\binom{-1.8 \times 7.2}{0.2 \times 7.2}
\end{gathered}
$$

The second iteration

$$
\begin{gathered}
\alpha_{1}=\frac{7.2^{2} \times 2}{12.96^{2}+12.96 \times 1.44}=\frac{1}{1.8} \\
\vec{x}_{2}=\binom{7.2}{-0.8}+\frac{1}{1.8}\binom{-12.96}{1.44}=\binom{0}{0} \\
\vec{r}_{2}=\binom{-7.2}{7.2}-\frac{1}{1.8}\binom{-1.8 \times 7.2}{0.2 \times 7.2}=\binom{0}{0} .
\end{gathered}
$$

Properties of the CG

Trace of the example (compared with Steepest-descent direction and Newton's direction.)

Theorem (Convergence)

For any $\vec{x} \in \mathbb{R}^{n}$, if A has m distinct eigenvalues, the $C G$ will terminate at the solution at most m iterations. Moreover, if A has eigenvalues $\lambda_{1} \leq \lambda_{2} \leq \cdots \lambda_{n}$,

$$
\left\|\vec{x}_{k+1}-\vec{x}^{*}\right\|_{A}^{2} \leq\left(\frac{\lambda_{n-k}-\lambda_{1}}{\lambda_{n-k}+\lambda_{1}}\right)^{2}\left\|\vec{x}_{0}-\vec{x}^{*}\right\|_{A}^{2}
$$

Preconditioned CG (PCG)

- The convergence of the CG can be very small if If $\kappa(A)^{-1}=\frac{\lambda_{\text {min }}}{\lambda_{\text {max }}}$ is small.
- If we can find a matrix M such that the ratio of the smallest eigenvalue and the largest eigenvalue of $M A \approx I$, then the convergence can be faster.
- The original problem $A \vec{x}=\vec{b}$ becomes $M A \vec{x}=M \vec{b}$.

$$
\vec{x}=(M A)^{-1} M \vec{b}=A^{-1} M^{-1} M \vec{b}=A^{-1} \vec{b}
$$

Truncated Newton method

(1) Hessian matrix A may fail to be positive definite.
(2) The linear system $A \vec{x}=\vec{b}$ need not be solved "exactly". (Recall the modified Newton's method.)
(3) Therefore, we can stop the iterations as soon as we found the indefiniteness of A or when $\|\vec{r}\|<\epsilon$.

Hessian free CG

- When the problem is large, generating and storing matrix A are expensive. (Matrix A may not be sparse in many cases.)
- We don't really need the Hessian matrix A explicitly. What we need is $A \vec{v}$.
- Matrix A is a special matrix $\nabla^{2} f_{k}$. Recall the definition of the directional derivative (See note 2),

$$
A \vec{v}=\nabla^{2} f_{k} \vec{v} \approx \frac{\nabla f\left(\vec{x}_{k}+h \vec{v}\right)-\nabla f\left(\vec{x}_{k}\right)}{h}
$$

for some small enough h.

- Other methods that can solve large-scale problems include Limited memory BFGS, etc.

Nonlinear CG

- When the problem is not quadratic, similar methods can be used for the nonlinear optimization.
- Two differences:
(1) Step length α_{k} is computed by the line search algorithm.
(2) The formula of computing β_{k}.
- Ex: The Fletcher-Reeves method, $\beta_{k}=\frac{\nabla f_{k+1}^{T} \nabla f_{k+1}}{\nabla f_{k}^{T} \nabla f_{k}}$.
- Ex: The Polak-Ribière method, $\beta_{k}=\frac{\nabla f_{k+1}^{T}\left(\nabla f_{k+1}-\nabla f_{k}\right)}{\nabla f_{k}^{T} \nabla f_{k}}$.

