Numerical Optimization

Unit 3: Methods That Guarantee Convergence

Che-Rung Lee

Scribe: 張雅芳

March 8, 2011

Where are we?

Three problems of Newton's method:

- Hessian matrix H may not be positive definite.
- Hessian matrix H is expensive to compute.
- **3** The system $\vec{p} = -H^{-1}\vec{g}$ is expensive to compute.

We will discuss methods to solve the first problem.

Modified Newton's method

- When the Hessian H is not positive definite, what can we do?
 - Use another \hat{H} , similar to H, but positive definite.
 - How can this work?

$$\vec{p} = -\hat{H}^{-1}\vec{g}$$

$$\vec{g}^T\vec{p} = -\vec{g}\hat{H}\vec{g} < 0$$

 \vec{p} is a descent direction.

Theorem (The convergence of the modified Newton)

If f is twice continuously differentiable in a domain D and $\nabla^2 f(x^*)$ is positive definite. Assume \vec{x}_0 is sufficiently close to \vec{x}^* and the modified \hat{H}_k is well-conditioned. Then

$$\lim_{k\to\infty}\nabla f(\vec{x}_k)=0.$$

Conditionness of a matrix

- For a matrix, what is "well-conditioned"?
 - A matrix A's condition number is $\kappa(A) = ||A|| ||A^{-1}||$. If $\kappa(A)$ is small, we call A is well-conditioned. If $\kappa(A)$ is large, we call A is ill-conditioned.
- But what is the meaning of $\kappa(A)$?
 - The condition number $\kappa(A)$ measures the "sensitivity" of the matrix when solving Ax = b.

$$(A + E)\tilde{x} = b = Ax$$

$$A\tilde{x} - Ax = -E\tilde{x}$$

$$\tilde{x} - x = -A^{-1}E\tilde{x}$$

$$\|\tilde{x} - x\| = \|A^{-1}E\tilde{x}\| \le \|A^{-1}\|\|E\|\|\tilde{x}\|$$

$$\frac{\|\tilde{x} - x\|}{\|\tilde{x}\|} \le \|A\|\|A^{-1}\|\frac{\|E\|}{\|A\|} = \kappa(A)\frac{\|E\|}{\|A\|}$$

Requirements of good modifications

- Three requirements of a good modification:
 - **1** Matrix \hat{H} is positive definite and well-conditioned, so the convergence theorem holds.
 - ② Matrix \hat{H} is similar to H, $\|\hat{H} H\|$ small, so \vec{p} is close to the Newton's direction, and the fast convergence can be hopefully preserved.
 - The modification can be easily computed.
- We will see three algorithms, and each has its pros and cons.
 - Eigenvalue modification.
 - Shift modification.
 - Modification with LDL decomposition.

First method: eigenvalue modification

Algorithm 1: Eigenvalue modification

- Compute H's eigenvalue decomposition, $H = V \Lambda V^{-1}$, $\Lambda = \operatorname{diag}(\lambda_1, \lambda_2, ..., \lambda_n)$.
- ② Make the modification for a given small $\epsilon > 0$,

$$\hat{\lambda}_i = \left\{ \begin{array}{ll} \lambda_i, & \text{if } \lambda_i > 0 \\ \epsilon, & \text{if } \lambda_i < 0 \end{array} \right.$$

- $\mathbf{3} \hat{H} = V \hat{\Lambda} V^{-1}, \hat{\Lambda} = diag(\hat{\lambda}_1 \hat{\lambda}_2 \dots \hat{\lambda}_n).$
 - It satisfies requirement 1 and 2 (why?), but eigenvalue decomposition is expensive to compute: $O(n^3)$ with big constant coefficient.

Second method: shift modification

Algorithm 2: Shift modification

- **1** Let $H_0 = H$.
- ② For k = 0, 1, 2, ...
 - **1** If H_k can have Cholesky decomposition, then return $\hat{H} = H_k$.
 - Otherwise, $H_{i+1} = H_i + \mu I$ for some small $\mu > 0$.
 - Why does that work?

$$H + \mu I = V \Lambda V^{-1} + \mu I = V \Lambda V^{-1} + \mu V V^{-1} = V (\Lambda + \mu I) V^{-1}$$

$$\Lambda + \mu I = \begin{pmatrix} \lambda_1 + \mu & & \\ & \lambda_2 + \mu & \\ & & \ddots & \\ & & & \lambda_n + \mu \end{pmatrix}, \quad \mu > 0$$

- Matrix H_k is symmetric positive definite if and only if its Cholesky definition exists. (See note 2.)
- Which requirements this method satisfies?

Third method: using LDL decomposition

Algorithm 3: Modified LDL Decomposition

- Compute $H = LDL^T$.
- ② Update D to \hat{D} so that all \hat{d}_i are positive.
- $\mathbf{3} \hat{H} = L \hat{D} L^T.$
 - The LDL decomposition of a symmetric matrix H is $H = LDL^T$, where L is lower triangular and D is diagonal.
 - Additional advantage of LDL decomposition: we can use that to solve $\hat{H}\vec{p}=-\vec{g}$,

$$\vec{p} = -L^{-T}D^{-1}L^{-1}\vec{g}$$
.

- But it is not numerically stable (the updates can be very large).
- One of the project is to implement stable modification methods, see this paper: Modified Cholesky Algorithms: A Catalog with New Approaches by Fang, Haw-ren and O'Leary, Dianne P.

Some properties of descent direction

Why are we so obsessed the "descent direction"?

- Let $\phi_k(\alpha) = f(\vec{x}_k + \alpha \vec{p}_k)$.
- Since \vec{p}_k is a decent direction, $\phi_k(\varepsilon) < \phi_k(0)$ for some small $\varepsilon > 0$.
- $\phi'_k(0) = \nabla f_k^T \vec{p_k}$. (Why?)
- $\phi'_k(\alpha) = \nabla f_k(\vec{x}_k + \alpha \vec{p}_k)^T \vec{p}_k$. (Why?)

Problems of descent directions

- The descent directions guarantee that $f(x_{k+1}) < f(x_k)$, which however do not guarantee to converge to the optimal solution.
- Here are two examples.

Figure 6.3.2 Monotonically decreasing sequences of iterates that don't converge to the minimizer

•
$$f(x) = x^2$$
, $x_0 = 2$, $p_k = (-1)^{k+1}$ and $\alpha_k = 2 + 3 \times 2^{-k-1}$, $\{x_k\} = \{2, -3/2, 5/4, -9/8...\} = \{(-1)^k (1 + 2^{-k})\}$.
• $f(x) = x^2$, $x_0 = 2$, $p_k = -1$ and $\alpha_k = 2^{-k-1}$, $\{x_k\} = \{2, 3/2, 5/4, 9/8...\} = \{1 + 2^{-k}\}$.

(UNIT 3) Numerical Optimization March 8, 2011

10 / 20

¹Example and figures are from chapter 6 of *Numerical Methods for Unconstrained Optimization and Nonlinear Equations* by J. Dennis and R. Schnabel

First example

- What's the problem of the first example?
 - The *relative decrease* is $\frac{|\alpha_k(\alpha_k) \alpha_k(0)|}{\alpha_k} \approx 2^{-k}$ which becomes too small before reaching the optimal solution.
 - The relative decrease is the absolute value of the slope of the line segment $(x_k, f(x_k)), (x_{k+1}, f(x_{k+1}))$.
 - How large should the relative decrease be? The slope of the tangent line at $\alpha=0$ provides good information about f's trend. (What is $\phi'(0)$? What is the sign of $\phi'(0)$?)
 - The sufficient decrease condition:

Sufficient decrease condition

$$f(\vec{x}_k + \alpha \vec{p}_k) \leq f(\vec{x}_k) + c_1 \alpha \vec{g}_k^T \vec{p}_k,$$

for some $c_1 \in (0,1)$.

Second example

- What's the problem of the second example?
 - The *relative decrease* of the second problem is $\frac{|\alpha_k(\alpha_k) \alpha_k(0)|}{\alpha_k} \approx 1$ is large enough, but *the step is too small*.
 - How large should the step size at least to be? Remember that α should be shrunken as f converges to the optimal solution. $\Rightarrow f'$ converges to 0.
 - So the step size should be proportional to the change of ϕ' , which leads to the curvature condition:

Curvature condition

$$\phi_k'(\alpha_k) = \nabla f(\vec{x}_k + \alpha_k \vec{p}_k)^T \vec{p}_k \ge c_2 \nabla f_k^T \vec{p}_k = c_2 \phi_k'(0)$$

for some $c_2 \in (c_1, 1)$.

Wolfe conditions

• Condition 1 and condition 2 together are called the Wolfe conditions.²

- Typical values: $c_1 = 0.1$ and $c_2 = 0.9$.
- Can both conditions be satisfied simultaneously for any smooth function?

²Figure is also from D&S's book.

Existence of feasible region for the Wolfe conditions

- The function $\phi_k(\alpha)$ must be bounded below, which means it will go up eventually (why?). Therefore, the line $y = \phi_k(0) + c_1 \phi_k'(0) \alpha$ must intersect with $y = \phi_k(\alpha)$, say at α_1 .
- ② Since \vec{p}_k is a descent direction, $\phi_k'(0) < c_1 \phi_k'(0) < 0$ for some $c_1 \in (0,1)$.
- **3** By the mean value theorem, $\exists \alpha_2 \in [0, \alpha_1]$, such that

$$c_1\phi'_k(0) = \frac{\phi_k(\alpha_1) - \phi_k(0)}{\alpha_1 - 0} = \phi'_k(\alpha_2).$$

• Since the curvature condition requires $c_2 > c_1$, between $[\alpha_2, \alpha_1]$, there must be some regions in which there exists α_3 such that $\phi_k'(\alpha_3) \geq c_2 \phi_k'(0)$. (why?)

Convergence guarantee

• Do Wolfe conditions guarantee convergence?

Theorem

If \vec{p}_k is a descent direction, α_k satisfies Wolfe conditions, f is bounded below and continuously differentiable, and ∇f is Lipschitz continuous, then

$$\sum_{k\geq 0}\cos^2\theta_k\|\nabla f_k\|^2<\infty$$

where
$$\cos \theta_k = \frac{-\nabla f_k^T \vec{p}_k}{\|\nabla f_k\| \|\vec{p}_k\|}$$
.

Definition

Lipschitz continuous A vector function $f: \mathbb{R}^n \to \mathbb{R}^m$ is Lipschitz continuous if $||f(\vec{x}) - f(\vec{y})|| < L||\vec{x} - \vec{y}||$ for some constant L > 0.

Implications of the theorem

- The convergence theorem implies $\lim_{k\to\infty}\cos^2\theta_k\|\nabla f_k\|^2=0$. (why?)
- To show the convergence, we need to show that $|\cos \theta_k| > \delta > 0$ when $k \to \infty$.
- For the steepest descent method, this condition satisfies automatically since \vec{p}_k is parallel to \vec{g}_k .
- How about the Newton's method or the modified Newton's method? For them, $\vec{p}_k = -H_k^{-1}\vec{g}_k$ or $\vec{p}_k = -\hat{H}_k^{-1}\vec{g}_k$.

$$\vec{g}_k^T \vec{p}_k = -\vec{g}_k^T H_k^{-1} \vec{g}_k.$$

One can show that if H_k is well-conditioned, $\kappa(H) < M$, then $|\cos\theta_k| > 1/M$. (The proof is in one of the homework problem 3 last year. You can checkout the solution if you are interested in the proof.)

Problems of the Wolfe conditions

Need to evaluate

$$\phi'(\alpha_k) = \nabla f(\vec{x}_k + \alpha_k \vec{p}_k)^T \vec{p}_k.$$

Another frequently used conditions is the Goldstein condition:

Goldstein condition

$$f(\vec{x}_k) + (1 - c)\alpha_k \nabla f_k^T \vec{p}_k \le f(\vec{x}_k + \alpha \vec{p}_k) \le f(\vec{x}_k) + c\alpha_k \nabla f_k^T \vec{p}_k$$

for $c \in [0, 1/2]$.

Line search method

Algorithm 4: Backtracking line search algorithm

- Guess an initial α_0 (For Newton's method, usually $\alpha_0 = 1$.)
- ② For $k = 1, 2, \ldots$ until α_k satisfies the required conditions.
 - Using interpolation methods to model function $\phi(\alpha)$ in the desired interval and then search the feasible solution of the model function.

What is the interpolation method?

- Initially, we know $\phi(0) = f(\vec{x}_k), \ \phi'(0) = \nabla f(\vec{x}_k)^T \vec{p}_K$, and $\phi(1)$. We can use that build a quadratic polynomial $q_0(\alpha)$ such that $q_0(0) = \phi(0), \ q'_0(0) = \phi'(0) \ \text{and} \ q_0(1) = \phi(1).$
- Use q_0 to find a solution α_1 . Check if α_1 satisfies the required conditions.
- Now we know four things: $\phi(0) = f(\vec{x}_k), \ \phi'(0) = \nabla f(\vec{x}_k)^T \vec{p}_K, \ \phi(1),$ and $\phi(\alpha_1)$. Use them to build a cubic polynomial $q_1(\alpha)$ such that $q_1(0) = \phi(0), \ q'_1(0) = \phi'(0), \ q_1(\alpha_1) = \phi(\alpha_1) \ \text{and} \ q_1(1) = \phi(1).$
- Use q_1 to find a solution α_2 . Check if α_2 satisfies the required conditions.

March 8, 2011

Trust region method

- The line search method finds a descent direction \vec{p}_k first, and then search a suitable step length α_k that satisfies some conditions.
- The idea of the trust region method is to build a model for the function, and then specifies a region in which this model works. It then solves constrained model problem.

Algorithm 5: The trust region framework

- **1** Guess an initial trust region Δ_0 and an initial \vec{x}_0 .
- ② For $k = 0, 1, 2, \ldots$ until convergence
 - **1** Build a model m_k of f at x_k
 - **2** Solve the constrained minimization problem: $\min_{\vec{p}} m_k(\vec{p})$ s.t. $||\vec{p}|| \leq \Delta_k$.
 - 3 Evaluate the trust region Δ_k . If not satisfied, update Δ_k and goto (2-2).
 - **3** Set $\vec{x}_{k+1} = \vec{x}_k + \vec{p}_k$ where \vec{p}_k is the solution of the model problem.

Details of the trust region method

- How to build a model for a function $f(\vec{x})$?
 - Most are based on the Taylor expansions. For example, the quadratic model

$$m_k(\vec{p}) = f_k + \vec{g}_k^T \vec{p} + \frac{1}{2} \vec{p}^T H_k \vec{p}.$$

- How to evaluate and update the trust region Δ_k ?
 - The trust region is evaluated by the given $\vec{p}_k \neq \vec{0}$. Let

$$\rho_k = \frac{f(\vec{x}_k) - f(\vec{x}_k + \vec{p}_k)}{m_k(\vec{0}) - m_k(\vec{p}_k)}.$$

- If $\rho_k < 0$, reject the solution, and let $\Delta_k = \sigma_k \Delta_k$ for some $0 < \sigma_k < 1$.
- If ρ_k is close to 1, increase $\Delta_k = \tau_k \Delta_k$ for some $\tau_k > 1$.
- The trust region method is also guaranteeing convergence. Some of its theorems involve the knowledge of constrained optimization problems, which will be discussed later.