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Where are we?

Three problems of Newton’s method:

1 Hessian matrix H may not be positive definite.

2 Hessian matrix H is expensive to compute.

3 The system p⃗ = −H−1g⃗ is expensive to compute.

We will discuss methods to solve the first problem.
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Modified Newton’s method

When the Hessian H is not positive definite, what can we do?

Use another Ĥ, similar to H, but positive definite.
How can this work?

p⃗ = −Ĥ−1g⃗

g⃗ T p⃗ = −g⃗ Ĥg⃗ < 0

p⃗ is a descent direction.

Theorem (The convergence of the modified Newton)

If f is twice continuously differentiable in a domain D and ∇2f (x∗) is
positive definite. Assume x⃗0 is sufficiently close to x⃗∗ and the modified Ĥk

is well-conditioned. Then

lim
k→∞

∇f (x⃗k) = 0.
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Conditionness of a matrix

For a matrix, what is “well-conditioned”?

A matrix A’s condition number is �(A) = ∥A∥∥A−1∥. If �(A) is small,
we call A is well-conditioned. If �(A) is large, we call A is
ill-conditioned.

But what is the meaning of �(A)?

The condition number �(A) measures the “sensitivity” of the matrix
when solving Ax = b.

(A + E )x̃ = b = Ax

Ax̃ − Ax = −E x̃

x̃ − x = −A−1E x̃

∥x̃ − x∥ = ∥A−1E x̃∥ ≤ ∥A−1∥∥E∥∥x̃∥
∥x̃ − x∥
∥x̃∥

≤ ∥A∥∥A−1∥∥E∥
∥A∥

= �(A)
∥E∥
∥A∥
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Requirements of good modifications

Three requirements of a good modification:
1 Matrix Ĥ is positive definite and well-conditioned, so the convergence

theorem holds.
2 Matrix Ĥ is similar to H, ∥Ĥ − H∥ small, so p⃗ is close to the Newton’s

direction, and the fast convergence can be hopefully preserved.
3 The modification can be easily computed.

We will see three algorithms, and each has its pros and cons.
1 Eigenvalue modification.
2 Shift modification.
3 Modification with LDL decomposition.
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First method: eigenvalue modification

Algorithm 1: Eigenvalue modification

1 Compute H’s eigenvalue decomposition, H = V ΛV−1,
Λ = diag(�1, �2, ..., �n).

2 Make the modification for a given small � > 0,

�̂i =

{
�i , if �i > 0
�, if �i < 0

3 Ĥ = V Λ̂V−1, Λ̂ = diag(�̂1 �̂2 ... �̂n).

It satisfies requirement 1 and 2 (why?), but eigenvalue decomposition
is expensive to compute: O(n3) with big constant coefficient.
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Second method: shift modification

Algorithm 2: Shift modification

1 Let H0 = H.
2 For k = 0, 1, 2, . . .

1 If Hk can have Cholesky decomposition, then return Ĥ = Hk .
2 Otherwise, Hi+1 = Hi + �I for some small � > 0.

Why does that work?

H + �I = V ΛV−1 + �I = V ΛV−1 + �VV−1 = V (Λ + �I )V−1

Λ + �I =

⎛⎜⎜⎜⎝
�1 + �

�2 + �
. . .

�n + �

⎞⎟⎟⎟⎠ , � > 0

Matrix Hk is symmetric positive definite if and only if its Cholesky
definition exists. (See note 2.)
Which requirements this method satisfies?
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Third method: using LDL decomposition

Algorithm 3: Modified LDL Decomposition

1 Compute H = LDLT .

2 Update D to D̂ so that all d̂i are positive.

3 Ĥ = LD̂LT .

The LDL decomposition of a symmetric matrix H is H = LDLT ,
where L is lower triangular and D is diagonal.

Additional advantage of LDL decomposition: we can use that to solve
Ĥp⃗ = −g⃗ ,

p⃗ = −L−TD−1L−1g⃗ .

But it is not numerically stable (the updates can be very large).

One of the project is to implement stable modification methods, see
this paper: Modified Cholesky Algorithms: A Catalog with New
Approaches by Fang, Haw-ren and O’Leary, Dianne P.
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Some properties of descent direction

Why are we so obsessed the ”descent direction”?

Let �k(�) = f (x⃗k + �p⃗k).

Since p⃗k is a decent direction, �k(") < �k(0) for some small " > 0.

�′k(0) = ∇f T
k p⃗k . (Why?)

�′k(�) = ∇fk(x⃗k + �p⃗k)T p⃗k . (Why?)
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Problems of descent directions

The descent directions guarantee that f (xk+1) < f (xk), which
however do not guarantee to converge to the optimal solution.
Here are two examples. 1

f (x) = x2, x0 = 2, pk = (−1)k+1 and �k = 2 + 3× 2−k−1,
{xk} = {2,−3/2, 5/4,−9/8. . . .} = {(−1)k(1 + 2−k)}.
f (x) = x2, x0 = 2, pk = −1 and �k = 2−k−1,
{xk} = {2, 3/2, 5/4, 9/8. . . .} = {1 + 2−k)}.

1
Example and figures are from chapter 6 of Numerical Methods for Unconstrained Optimization and Nonlinear Equations

by J. Dennis and R. Schnabel

(UNIT 3) Numerical Optimization March 8, 2011 10 / 20



First example

What’s the problem of the first example?

The relative decrease is ∣�k (�k )−�k (0)∣
�k

≈ 2−k which becomes too small
before reaching the optimal solution.
The relative decrease is the absolute value of the slope of the line
segment (xk , f (xk)), (xk+1, f (xk+1)).
How large should the relative decrease be? The slope of the tangent
line at � = 0 provides good information about f ’s trend. (What is
�′(0)? What is the sign of �′(0)?)
The sufficient decrease condition:

Sufficient decrease condition

f (x⃗k + �p⃗k) ≤ f (x⃗k) + c1�g⃗ T
k p⃗k ,

for some c1 ∈ (0, 1).
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Second example

What’s the problem of the second example?

The relative decrease of the second problem is ∣�k (�k )−�k (0)∣
�k

≈ 1 is
large enough, but the step is too small.
How large should the step size at least to be? Remember that � should
be shrunken as f converges to the optimal solution. ⇒ f ′ converges to
0.
So the step size should be proportional to the change of �′, which
leads to the curvature condition:

Curvature condition

�′k(�k) = ∇f (x⃗k + �k p⃗k) T p⃗k ≥ c2∇f T
k p⃗k = c2�

′
k(0)

for some c2 ∈ (c1, 1).
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Wolfe conditions

Condition 1 and condition 2 together are called the Wolfe conditions.2

Typical values: c1 = 0.1 and c2 = 0.9.
Can both conditions be satisfied simultaneously for any smooth
function?

2
Figure is also from D&S’s book.
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Existence of feasible region for the Wolfe conditions

1 The function �k(�) must be bounded below, which means it will go
up eventually (why?). Therefore, the line y = �k(0) + c1�

′
k(0)� must

intersect with y = �k(�), say at �1.

2 Since p⃗k is a descent direction, �′k(0) < c1�
′
k(0) < 0 for some

c1 ∈ (0, 1).

3 By the mean value theorem, ∃�2 ∈ [0, �1], such that

c1�
′
k(0) =

�k(�1)− �k(0)

�1 − 0
= �′k(�2).

4 Since the curvature condition requires c2 > c1, between [�2, �1],
there must be some regions in which there exists �3 such that
�′k(�3) ≥ c2�

′
k(0). (why?)
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Convergence guarantee

Do Wolfe conditions guarantee convergence?

Theorem

If p⃗k is a descent direction, �k satisfies Wolfe conditions, f is bounded
below and continuously differentiable, and ∇f is Lipschitz continuous, then∑

k≥0

cos2 �k∥∇fk∥2 <∞

where cos �k =
−∇f T

k p⃗k

∥∇fk∥∥p⃗k∥
.

Definition

Lipschitz continuous A vector function f : ℝn → ℝm is Lipschitz
continuous if ∥f (x⃗)− f (y⃗)∥ < L∥x⃗ − y⃗∥ for some constant L > 0.
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Implications of the theorem

The convergence theorem implies limk→∞ cos2 �k∥∇fk∥2 = 0. (why?)

To show the convergence, we need to show that ∣ cos �k ∣ > � > 0
when k →∞.

For the steepest descent method, this condition satisfies automatically
since p⃗k is parallel to g⃗k .

How about the Newton’s method or the modified Newton’s method?
For them, p⃗k = −H−1

k g⃗k or p⃗k = −Ĥ−1
k g⃗k .

g⃗ T
k p⃗k = −g⃗ T

k H−1
k g⃗k .

One can show that if Hk is well-conditioned, �(H) < M, then
∣ cos �k ∣ > 1/M. (The proof is in one of the homework problem 3 last
year. You can checkout the solution if you are interested in the proof.)
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Problems of the Wolfe conditions

Need to evaluate

�′(�k) = ∇f (x⃗k + �k p⃗k)T p⃗k .

Another frequently used conditions is the Goldstein condition:

Goldstein condition

f (x⃗k) + (1− c)�k ∇f T
k p⃗k ≤ f (x⃗k + �p⃗k) ≤ f (x⃗k) + c�k ∇f T

k p⃗k

for c ∈ [0, 1/2].
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Line search method

Algorithm 4: Backtracking line search algorithm

1 Guess an initial �0 (For Newton’s method, usually �0 = 1.)
2 For k = 1, 2, . . . until �k satisfies the required conditions.

Using interpolation methods to model function �(�) in the desired
interval and then search the feasible solution of the model function.

What is the interpolation method?

Initially, we know �(0) = f (x⃗k), �′(0) = ∇f (x⃗k)T p⃗K , and �(1). We
can use that build a quadratic polynomial q0(�) such that
q0(0) = �(0), q′0(0) = �′(0) and q0(1) = �(1).
Use q0 to find a solution �1. Check if �1 satisfies the required
conditions.
Now we know four things: �(0) = f (x⃗k), �′(0) = ∇f (x⃗k)T p⃗K , �(1),
and �(�1). Use them to build a cubic polynomial q1(�) such that
q1(0) = �(0), q′1(0) = �′(0), q1(�1) = �(�1) and q1(1) = �(1).
Use q1 to find a solution �2. Check if �2 satisfies the required
conditions.
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Trust region method

The line search method finds a descent direction p⃗k first, and then
search a suitable step length �k that satisfies some conditions.

The idea of the trust region method is to build a model for the
function, and then specifies a region in which this model works. It
then solves constrained model problem.

Algorithm 5: The trust region framework

1 Guess an initial trust region Δ0 and an initial x⃗0.

2 For k = 0, 1, 2, . . . until convergence

1 Build a model mk of f at xk
2 Solve the constrained minimization problem: min

p⃗
mk(p⃗) s.t. ∥p⃗∥ ≤ Δk .

3 Evaluate the trust region Δk . If not satisfied, update Δk and goto (2-2).
4 Set x⃗k+1 = x⃗k + p⃗k where p⃗k is the solution of the model problem.
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Details of the trust region method

How to build a model for a function f (x⃗)?

Most are based on the Taylor expansions. For example, the quadratic
model

mk(p⃗) = fk + g⃗T
k p⃗ +

1

2
p⃗ THk p⃗.

How to evaluate and update the trust region Δk?

The trust region is evaluated by the given p⃗k ∕= 0⃗. Let

�k =
f (x⃗k)− f (x⃗k + p⃗k)

mk (⃗0)−mk(p⃗k)
.

If �k < 0, reject the solution, and let Δk = �kΔk for some 0 < �k < 1.
If �k is close to 1, increase Δk = �kΔk for some �k > 1.

The trust region method is also guaranteeing convergence. Some of
its theorems involve the knowledge of constrained optimization
problems, which will be discussed later.
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