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Partial derivative of a two variable function

e Given a two variable function f(x1, x2).

@ The partial derivative of f with respect to x; is

of . f(x1 + h,x2) — f(x1,x2)
o =limp0

oxq h

orf . f(Xl,XQ + h) — f(Xl,XQ)
= = limy_y0
8X2 h

@ The meaning of partial derivative: let F(x;) = f(x1, v) and
G(x2) = f(u, x2),

of

O (x1,v) = F'(x1).

of L
67X2(U,X2) = G (X2).
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Gradient

The gradient of a function f : R” — R is a vector in R” defined as

8f/8X1 X1
g=VIf(xX)= ; ,where X = _
(9f/(9Xn Xn
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Directional derivative

The directional derivative of a function f : R" — R in the direction B is
defined as L
f(X+ hp) — f(x)

h

D((%), B) = limpso

Remark

| \

If f: R" — R is continuously differentiable in a neighborhood of X,
D(f(%), B) = VF(x)T B,

for any vector p.

\
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The descent directions

e A direction p is called a descent direction of f(X) at X if
D(f(%), B) < 0.
o If f is smooth enough, B is a descent direction if f(Xy)" 5 < 0.
e Which direction p makes f(xg + p) decreasing most?
e Mean Value theorem

f(x + B) = f(x0) + V(X + aB) ' B
o p= —VIf(xp) is called the steepest descent direction of f(x) at xp.

f(x) + VF(x+ap)' p
f(x0) — V(%) TVF(x0)

f(xo + P)

Q|
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The steepest descent algorithm

The steepest descent algorithm

For k = 1,2, ... until convergence
Compute pi = =V (xk)
Find ay € (0,1) s,t, F(ak) = f(Xk + akpk) is minimized.
Xk41 = Xk + 0Pk

@ You can use any single variable optimization techniques to compute
Q.

o If F(ak) = f(xk + axpk) is a quadratic function, ay has a theoretical
formula. (will be derived in next slides.)

o If F(ak) = f(Xk + apk) is more than a quadratic function, we may
approximate it by a quadratic model and use the formula to solve ay.

@ Higher order polynomial approximation will be mentioned in the line
search algorithm.
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Quadratic model

e If f(X) is a quadratic function, we can write it as
f(x,y) = ax® + bxy + cy® + dx + ey + £(0,0).

@ If f is smooth, the derivatives of f are

f f
8—:2ax+by+d, a—:2cy+bx+e
Ox Oy
0%f 0*f 0%f 0%f
AL PR - -
Ox?2 dy? Oxdy  Oydx
o Let X = < ; ) f(X) can be expressed as
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Gradient and Hessian

@ The gradient of f, as defined before, is
of

g(x) = VIF(x) = % :(21;3 2bc>z+<z)
oy

@ The second derivative, which is a matrix called Hessian, is

of of
2002y () x2  9x0 _(2a b
dydx  Oy?

o Therefore, f(X) = 1/2X TH(0)X + g(0) "X + (0),
VF(X) = HX + &, and V?f = H

o In the following lectures, we assume H is symmetric. Thus, H = H'.
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Optimal ay for quadratic model

o We denote Hx = H(Xk), gk = &(Xk), and fx = f(Xk).
e Also, H= H(0), g = g(0), and

f = £(0).
Fla) = (X + apk)
1, . N . . . . =
= E(Xk + apk)TH(Xk + apy) + gT(Xk + apk) + £(0)

1, o R - Y NT o o? 1.
= EXkTHXk +g"x + f(0) + a(HXk + g)TPk + ?PkTHPk

2
T = [N N
= fi+ag! Bx + =B Hpx

2
F'(a) = &' px+ab/ Hpx
—&, Px
The optimal solution of ay is at F'(a) = 0, which is ay = = Tk
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Optimal condition

Theorem (Necessary and sufficient condition of optimality)

o Let f: R" — R be continuously differentiable in D. If X* € D is a
local minimizer, Vf(X*) = 0 and V?f(X) is positive semidefinite.

o IfVFf(X*) =0 and V?f(X) is positive definite, then X* is a local
minimizer.

Definition
@ A matrix H is called positive definite if for any nonzero vector
veR" VvIHV > 0.

@ H is called positive semidefinite if VIHV >0 for all v € R".

@ H is negative definite or negative semidefinite if —H is positive
definite or positive semidefinite.

e H is indefinite if it is neither positive semidefinite nor negative
semidefinite.
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Convergence of the steepest descent method

Theorem (Convergence theorem of the steepest descent method)

If the steepest descent method converges to a local minimizer X*, where
V2f(>?) is positive definite, and emax and emin are the largest and the
smallest eigenvalue of V2f(X), then

it H)_('/:-I—l __')?*H < (emax — emin)
k—00 ”Xk — X*H €max T €min

Definition
For a scalar A and an unit vector v, (A, v) is an eigenpair of of a matrix H

if Hv = Av. The scalar X is called an eigenvalue of H, and v is called an
eigenvector.
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Newton's method

@ We use the quadratic model to find the step length . Can we use
the quadratic model to find the search direction p,?
@ Yes, we can. Recall the quadratic model (now p is the variable.)

I 1, o T
f(%+P) ~ 5P THp+ B T8k + fi

o Compute the gradient V5f(Xx + ) = Hip + Ek
@ The solution of V5f(Xx + p) =0is px = —Hk 8.
@ Newton's method uses pj as the search direction

Newton's method
© Given an initial guess Xy

@ For k=0,1,2,... until converge

= = —il=
X1 = Xk — H " 8k-
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Descent direction

@ The direction py = —Hk_lgk is called Newton's direction

@ Is py a descent direction? (what's the definition of descent
directions?)

We only need to check if ng/_J'k < 0.
gl Pk = —&¢ H, &k

Thus, Pk is a descent direction if H™1 is positive definite.

For a symmetric matrix H, the following conditions are equivalent

H is positive definite.

H~1 is positive definite.

All the eigenvalues of H are positive.
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Some properties of eigenvalues/eigenvectors

@ A symmetric matrix H, of order n has n real eigenvalues and n real
and linearly independent (orthogonal) eigenvectors

Hvi = Avi, Hvo = Aovo, ..., Hv, = Apv,

A1
A2
oletV=[ny vo ... vp, A= _ , HV = VA,
An
o If A1, A2, ..., A\, are nonzero, since H = VAV
1/\
1/X
Hl=vAlvl Al /
1/An
1 1 1
The eigenvalues of H! are Non
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How to solve Hp = —g?

@ For a symmetric positive definite matrix H, Hp = —g can be solved
by Cholesky decomposition, which is similar to LU decomposition, but
is only half computational cost of LU decomposition.

hi1 hi2 hiz
o Let H= h21 h22 h23 , where h12 = h21, h13 = h31, h23 = h32.
h31 hsz  h33
Cholesky decomposition makes H = LLT, where L is a lower
l11
triangular matrix, L = | fp1 {2
l31 L3 U33

@ Using Cholesky decomposition, Hg = —g can be solved by

©Q Compute H=LLT
Q@ p5=—(LT)'Lg
@ In Matlab, use p = —H \ g. Don't use inv(H).
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The Cholesky decomposition

Fori=1,2,...,n

Uy = ol
Forj=i+1,i+2,....n
e
0. = 2
J! 0

For k= it1,it2, ..}
hjk = hjx — Ljili

hi1 hi2 hi3 3 L1101 011431
ho1 hoy hyz | = LLT = | #1100 E%l + @2 l21031 + €203
hsi hz h33 U103z Corlsy + laolsp (3, + (3, + (3,
_ M2 = hyy — ol
i = Vha 5o 22 — L2121 by — H2)
= 22
521 = h21/€11 h:(322) = h32 - 521631

t = h2/e
ls1 = ha/ltun A2 = gy — L3105 32 32 /22

l33 = h;g) — (32032

February 28, 2011 16 / 17

(UNIT 2) Numerical Optimization




Convergence of Newton's method

Suppose f is twice differentiable. V?f is continuous in a neighborhood of
X* and V2f(X*) is positive definite, and if Xy is sufficiently close to X*, the
sequence converges to X* quadratically.

v

Three problems of Newton's method

@ H may not be positive definite = Modified Newton's method + Line
search.

@ H is expensive to compute = Quasi-Newton.

@ H!is expensive to compute = Conjugate gradient.
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