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Partial derivative of a two variable function

Given a two variable function f (x1, x2).

The partial derivative of f with respect to xi is
∂f

∂x1
= limh→0

f (x1 + h, x2)− f (x1, x2)

h

∂f

∂x2
= limh→0

f (x1, x2 + h)− f (x1, x2)

h

The meaning of partial derivative: let F (x1) = f (x1, v) and
G (x2) = f (u, x2),

∂f

∂x1
(x1, v) = F ′(x1).

∂f

∂x2
(u, x2) = G ′(x2).
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Gradient

Definition

The gradient of a function f : Rn → R is a vector in Rn defined as

~g = ∇f (~x) =

 ∂f /∂x1
...

∂f /∂xn

 ,where ~x =

 x1
...

xn


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Directional derivative

Definition

The directional derivative of a function f : Rn → R in the direction ~p is
defined as

D(f (~x), ~p) = limh→0
f (~x + h~p)− f (x)

h
.

Remark

If f : Rn → R is continuously differentiable in a neighborhood of ~x ,

D(f (~x), ~p) = ∇f (x)T~p,

for any vector ~p.
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The descent directions

A direction ~p is called a descent direction of f (~x) at ~x if
D(f (~x0), ~p) < 0.

If f is smooth enough, ~p is a descent direction if f (~x0)T~p < 0.

Which direction ~p makes f (~x0 + ~p) decreasing most?

Mean Value theorem

f (~x0 + ~p) = f (~x0) +∇f (~x0 + α~p)>~p

~p = −∇f (~x0) is called the steepest descent direction of f (x) at x0.

f (~x0 + ~p) = f (~x0) +∇f (~x0 + α~p)>~p
≈ f (~x0)− ∇f (~x0)T∇f (~x0)
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The steepest descent algorithm

The steepest descent algorithm

For k = 1, 2, ... until convergence
Compute ~pk = −∇f (xk)
Find αk ∈ (0, 1) s,t, F (αk) = f (~xk + αk ~pk) is minimized.
~xk+1 = ~xk + αk ~pk

You can use any single variable optimization techniques to compute
αk .

If F (αk) = f (~xk + αk ~pk) is a quadratic function, αk has a theoretical
formula. (will be derived in next slides.)

If F (αk) = f (~xk + αk ~pk) is more than a quadratic function, we may
approximate it by a quadratic model and use the formula to solve αk .

Higher order polynomial approximation will be mentioned in the line
search algorithm.
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Quadratic model

If f (~x) is a quadratic function, we can write it as

f (x , y) = ax2 + bxy + cy2 + dx + ey + f (0, 0).

If f is smooth, the derivatives of f are

∂f

∂x
= 2ax + by + d ,

∂f

∂y
= 2cy + bx + e

∂2f

∂x2
= 2a,

∂2f

∂y2
= 2c ,

∂2f

∂x∂y
=

∂2f

∂y∂x
= b.

Let ~x =

(
x
y

)
, f (~x) can be expressed as

f (~x) =
1

2
~x T

(
2a b
b 2c

)
~x + ~x T

(
d
e

)
+ f (~0).
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Gradient and Hessian

The gradient of f , as defined before, is

g(~x) = ∇f (~x) =

 ∂f

∂x
∂f

∂y

 =

(
2a b
b 2c

)
~x +

(
d
e

)

The second derivative, which is a matrix called Hessian, is

∇2f (~x) = H(~x) =


∂f

∂x2

∂f

∂x∂y
∂f

∂y∂x

∂f

∂y2

 =

(
2a b
b 2c

)

Therefore, f (~x) = 1/2~x TH(~0)~x + g(~0)T~x + f (~0),

∇f (~x) = H~x + ~g , and ∇2f = H

In the following lectures, we assume H is symmetric. Thus, H = HT .
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Optimal αk for quadratic model

We denote Hk = H(~xk), ~gk = ~g(~xk), and fk = f (~xk).

Also, H = H(~0), ~g = ~g(~0), and f = f (~0).

F (α) = f (~xk + α~pk)

=
1

2
(~xk + α~pk)TH(~xk + α~pk) + gT (~xk + α~pk) + f (~0)

=
1

2
~x T
k H~xk + gT ~xk + f (~0) + α(H~xk + ~g)T~pk +

α2

2
~p T
k H~pk

= fk + α~gT
k ~pk +

α2

2
~p T
k H~pk

F ′(α) = ~g T
k ~pk + α~p T

k H~pk

The optimal solution of αk is at F ′(α) = 0, which is αk =
−~g T

k ~pk

~p T
k H~pk
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Optimal condition

Theorem (Necessary and sufficient condition of optimality)

Let f : Rn → R be continuously differentiable in D. If ~x∗ ∈ D is a
local minimizer, ∇f (~x∗) = 0 and ∇2f (~x) is positive semidefinite.

If ∇f (~x∗) = 0 and ∇2f (~x) is positive definite, then ~x∗ is a local
minimizer.

Definition

A matrix H is called positive definite if for any nonzero vector
~v ∈ Rn, ~v>H~v > 0.

H is called positive semidefinite if ~v>H~v ≥ 0 for all ~v ∈ Rn.

H is negative definite or negative semidefinite if −H is positive
definite or positive semidefinite.

H is indefinite if it is neither positive semidefinite nor negative
semidefinite.
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Convergence of the steepest descent method

Theorem (Convergence theorem of the steepest descent method)

If the steepest descent method converges to a local minimizer ~x∗, where
∇2f (~x) is positive definite, and emax and emin are the largest and the
smallest eigenvalue of ∇2f (~x), then

lim
k→∞

‖~xk+1 − ~x∗‖
‖~xk − ~x∗‖

≤
(

emax − emin

emax + emin

)

Definition

For a scalar λ and an unit vector v , (λ, v) is an eigenpair of of a matrix H
if Hv = λv . The scalar λ is called an eigenvalue of H, and v is called an
eigenvector.
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Newton’s method

We use the quadratic model to find the step length αk . Can we use
the quadratic model to find the search direction ~pk?

Yes, we can. Recall the quadratic model (now ~p is the variable.)

f (~xk + ~p) ≈ 1

2
~p THk~p + ~p T~gk + fk

Compute the gradient ∇~pf (~xk + ~p) = Hk~p + ~gk
The solution of ∇~pf (~xk + ~p) = 0 is ~pk = −H−1k ~gk .

Newton’s method uses pk as the search direction

Newton’s method

1 Given an initial guess ~x0

2 For k = 0, 1, 2, . . . until converge

~xk+1 = ~xk − H−1k ~gk .
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Descent direction

The direction pk = −H−1k gk is called Newton’s direction

Is pk a descent direction? (what’s the definition of descent
directions?)

We only need to check if ~g T
k ~pk < 0.

~gT
k ~pk = −~gT

k H−1k ~gk .

Thus, ~pk is a descent direction if H−1 is positive definite.

For a symmetric matrix H, the following conditions are equivalent

H is positive definite.

H−1 is positive definite.

All the eigenvalues of H are positive.
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Some properties of eigenvalues/eigenvectors

A symmetric matrix H, of order n has n real eigenvalues and n real
and linearly independent (orthogonal) eigenvectors

Hv1 = λ1v1, Hv2 = λ2v2, ...,Hvn = λnvn

Let V = [v1 v2 ... vn], Λ =


λ1

λ2
. . .

λn

, HV = V Λ.

If λ1, λ2, ..., λn are nonzero, since H = V ΛV−1,

H−1 = V Λ−1V−1, Λ−1 =


1/λ1

1/λ2
. . .

1/λn


The eigenvalues of H−1 are

1

λ1
,

1

λ2
, ...,

1

λn
.
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How to solve H~p = −~g?

For a symmetric positive definite matrix H, H~p = −~g can be solved
by Cholesky decomposition, which is similar to LU decomposition, but
is only half computational cost of LU decomposition.

Let H =

 h11 h12 h13

h21 h22 h23

h31 h32 h33

, where h12 = h21, h13 = h31, h23 = h32.

Cholesky decomposition makes H = LLT , where L is a lower

triangular matrix, L =

 `11
`21 `22
`31 `32 `33


Using Cholesky decomposition, H~p = −~g can be solved by

1 Compute H = LLT

2 ~p = −(LT )−1L−1~g

In Matlab, use p = −H \ g . Don’t use inv(H).
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The Cholesky decomposition

For i = 1, 2, ..., n
`ii =

√
hii

For j = i + 1, i + 2, ..., n

`ji =
hji

`ii
For k = i + 1, i + 2, ..., j

hjk = hjk − `ji`ki h11 h12 h13

h21 h22 h23

h31 h32 h33

=LLT =

 `211 `11`21 `11`31
`11`21 `221 + `222 `21`31 + `22`32
`11`33 `21`31 + `22`32 `231 + `232 + `233


`11 =

√
h11

`21 = h21/`11

`31 = h31/`11

h
(2)
22 = h22 − `21`21

h
(2)
32 = h32 − `21`31

h
(2)
33 = h33 − `31`31

`22 =

√
h
(2)
22

`32 = h
(2)
32 /`22

`33 =

√
h
(2)
33 − `32`32
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Convergence of Newton’s method

Theorem

Suppose f is twice differentiable. ∇2f is continuous in a neighborhood of
~x∗ and ∇2f (~x∗) is positive definite, and if ~x0 is sufficiently close to ~x∗, the
sequence converges to ~x∗ quadratically.

Three problems of Newton’s method

1 H may not be positive definite ⇒ Modified Newton’s method + Line
search.

2 H is expensive to compute ⇒ Quasi-Newton.

3 H−1 is expensive to compute ⇒ Conjugate gradient.
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