Numerical Optimization Unit 2: Multivariable optimization problems

Che-Rung Lee

Scribe: 張雅芳

February 28, 2011

Partial derivative of a two variable function

- Given a two variable function $f(x_1, x_2)$.
- The partial derivative of f with respect to x_i is

$$\begin{cases} \frac{\partial f}{\partial x_1} = \lim_{h \to 0} \frac{f(x_1 + h, x_2) - f(x_1, x_2)}{h} \\\\ \frac{\partial f}{\partial x_2} = \lim_{h \to 0} \frac{f(x_1, x_2 + h) - f(x_1, x_2)}{h} \end{cases}$$

• The meaning of partial derivative: let $F(x_1) = f(x_1, v)$ and $G(x_2) = f(u, x_2)$,

$$\frac{\partial f}{\partial x_1}(x_1, v) = F'(x_1).$$
$$\frac{\partial f}{\partial x_2}(u, x_2) = G'(x_2).$$

Definition

The gradient of a function $f : \mathbb{R}^n \to \mathbb{R}$ is a **vector** in \mathbb{R}^n defined as

$$\vec{g} = \nabla f(\vec{x}) = \begin{pmatrix} \partial f/\partial x_1 \\ \vdots \\ \partial f/\partial x_n \end{pmatrix}$$
, where $\vec{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$

Definition

The directional derivative of a function $f : \mathbb{R}^n \to \mathbb{R}$ in the direction \vec{p} is defined as

$$D(f(\vec{x}), \vec{p}) = \lim_{h \to 0} \frac{f(\vec{x} + h\vec{p}) - f(x)}{h}$$

Remark

If $f : \mathbb{R}^n \to \mathbb{R}$ is continuously differentiable in a neighborhood of \vec{x} ,

$$D(f(\vec{x}), \vec{p}) = \nabla f(x)^T \vec{p},$$

for any vector \vec{p} .

- A direction \vec{p} is called a **descent direction** of $f(\vec{x})$ at \vec{x} if $D(f(\vec{x_0}), \vec{p}) < 0$.
- If f is smooth enough, \vec{p} is a descent direction if $f(\vec{x}_0)^T \vec{p} < 0$.
- Which direction \vec{p} makes $f(\vec{x_0} + \vec{p})$ decreasing most?
 - Mean Value theorem

$$f(\vec{x_0} + \vec{p}) = f(\vec{x_0}) + \nabla f(\vec{x_0} + \alpha \vec{p})^\top \vec{p}$$

• $\vec{p} = -\nabla f(\vec{x_0})$ is called the steepest descent direction of f(x) at x_0 .

$$\begin{array}{rcl} f(\vec{x_0} + \vec{p}) &=& f(\vec{x_0}) + \nabla f(\vec{x_0} + \alpha \vec{p})^\top \vec{p} \\ &\approx& f(\vec{x_0}) - \nabla f(\vec{x_0})^\top \nabla f(\vec{x_0}) \end{array}$$

The steepest descent algorithm

For k = 1, 2, ... until convergence Compute $\vec{p_k} = -\nabla f(x_k)$ Find $\alpha_k \in (0, 1)$ s,t, $F(\alpha_k) = f(\vec{x_k} + \alpha_k \vec{p_k})$ is minimized. $\vec{x_{k+1}} = \vec{x_k} + \alpha_k \vec{p_k}$

- You can use any single variable optimization techniques to compute α_k .
- If F(α_k) = f(x_k + α_kp_k) is a quadratic function, α_k has a theoretical formula. (will be derived in next slides.)
- If F(α_k) = f(x_k + α_kp_k) is more than a quadratic function, we may approximate it by a quadratic model and use the formula to solve α_k.
- Higher order polynomial approximation will be mentioned in the line search algorithm.

Quadratic model

• If $f(\vec{x})$ is a quadratic function, we can write it as

$$f(x, y) = ax^2 + bxy + cy^2 + dx + ey + f(0, 0).$$

• If f is smooth, the derivatives of f are

$$\frac{\partial f}{\partial x} = 2ax + by + d, \quad \frac{\partial f}{\partial y} = 2cy + bx + e$$
$$\frac{\partial^2 f}{\partial x^2} = 2a, \quad \frac{\partial^2 f}{\partial y^2} = 2c, \quad \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x} = b.$$

• Let $\vec{x} = \begin{pmatrix} x \\ y \end{pmatrix}$, $f(\vec{x})$ can be expressed as
$$f(\vec{x}) = \frac{1}{2}\vec{x}^T \begin{pmatrix} 2a & b \\ b & 2c \end{pmatrix} \vec{x} + \vec{x}^T \begin{pmatrix} d \\ e \end{pmatrix} + f(\vec{0}).$$

Gradient and Hessian

• The gradient of f, as defined before, is

$$g(\vec{x}) = \nabla f(\vec{x}) = \begin{pmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{pmatrix} = \begin{pmatrix} 2a & b \\ b & 2c \end{pmatrix} \vec{x} + \begin{pmatrix} d \\ e \end{pmatrix}$$

• The second derivative, which is a matrix called Hessian, is

$$\nabla^2 f(\vec{x}) = H(\vec{x}) = \begin{pmatrix} \frac{\partial f}{\partial x^2} & \frac{\partial f}{\partial x \partial y} \\ \frac{\partial f}{\partial y \partial x} & \frac{\partial f}{\partial y^2} \end{pmatrix} = \begin{pmatrix} 2a & b \\ b & 2c \end{pmatrix}$$

• Therefore, $f(\vec{x}) = 1/2\vec{x}^T H(\vec{0})\vec{x} + g(\vec{0})^T \vec{x} + f(\vec{0})$,

$$abla f(ec x) = Hec x + ec g$$
, and $abla^2 f = H$

• In the following lectures, we assume H is symmetric. Thus, $H = H^T$.

(UNIT 2)

Optimal α_k for quadratic model

- We denote $H_k = H(\vec{x}_k)$, $\vec{g}_k = \vec{g}(\vec{x}_k)$, and $f_k = f(\vec{x}_k)$.
- Also, $H = H(\vec{0})$, $\vec{g} = \vec{g}(\vec{0})$, and $f = f(\vec{0})$.

$$F(\alpha) = f(\vec{x}_k + \alpha \vec{p}_k)$$

$$= \frac{1}{2} (\vec{x}_k + \alpha \vec{p}_k)^T H(\vec{x}_k + \alpha \vec{p}_k) + g^T (\vec{x}_k + \alpha \vec{p}_k) + f(\vec{0})$$

$$= \frac{1}{2} \vec{x}_k^T H \vec{x}_k + g^T \vec{x}_k + f(\vec{0}) + \alpha (H \vec{x}_k + \vec{g})^T \vec{p}_k + \frac{\alpha^2}{2} \vec{p}_k^T H \vec{p}_k$$

$$= f_k + \alpha \vec{g}_k^T \vec{p}_k + \frac{\alpha^2}{2} \vec{p}_k^T H \vec{p}_k$$

$$F'(\alpha) = \vec{g}_k^T \vec{p}_k + \alpha \vec{p}_k^T H \vec{p}_k$$

The optimal solution of α_k is at $F'(\alpha) = 0$, which is $\alpha_k = \frac{-\vec{g_k}^T \vec{p}_k}{\vec{p}_{\iota}^T H \vec{p}_k}$

Optimal condition

Theorem (Necessary and sufficient condition of optimality)

- Let $f : \mathbb{R}^n \to \mathbb{R}$ be continuously differentiable in D. If $\vec{x}^* \in D$ is a local minimizer, $\nabla f(\vec{x}^*) = 0$ and $\nabla^2 f(\vec{x})$ is positive semidefinite.
- If ∇f(x*) = 0 and ∇²f(x) is positive definite, then x* is a local minimizer.

Definition

- A matrix *H* is called **positive definite** if for any nonzero vector $\vec{v} \in \mathbb{R}^n$, $\vec{v}^\top H \vec{v} > 0$.
- *H* is called **positive semidefinite** if $\vec{v}^{\top}H\vec{v} \ge 0$ for all $\vec{v} \in \mathbb{R}^n$.
- *H* is **negative definite** or **negative semidefinite** if *-H* is positive definite or positive semidefinite.
- *H* is **indefinite** if it is neither positive semidefinite nor negative semidefinite.

Theorem (Convergence theorem of the steepest descent method)

If the steepest descent method converges to a local minimizer \vec{x}^* , where $\nabla^2 f(\vec{x})$ is positive definite, and e_{max} and e_{min} are the largest and the smallest eigenvalue of $\nabla^2 f(\vec{x})$, then

$$\lim_{k \to \infty} \frac{\|\vec{x}_{k+1} - \vec{x}^*\|}{\|\vec{x}_k - \vec{x}^*\|} \le \left(\frac{e_{\max} - e_{\min}}{e_{\max} + e_{\min}}\right)$$

Definition

For a scalar λ and an unit vector v, (λ, v) is an eigenpair of of a matrix H if $Hv = \lambda v$. The scalar λ is called an eigenvalue of H, and v is called an eigenvector.

Newton's method

- We use the quadratic model to find the step length α_k. Can we use the quadratic model to find the search direction p
 _k?
- Yes, we can. Recall the quadratic model (now \vec{p} is the variable.)

$$f(\vec{x}_k+\vec{p})\approx\frac{1}{2}\vec{p}^TH_k\vec{p}+\vec{p}^T\vec{g}_k+f_k$$

- Compute the gradient $abla_{ec{p}}f(ec{x}_k+ec{p})=H_kec{p}+ec{g}_k$
- The solution of $\nabla_{\vec{p}} f(\vec{x}_k + \vec{p}) = 0$ is $\vec{p}_k = -H_k^{-1} \vec{g}_k$.
- Newton's method uses p_k as the search direction

Newton's method

- **1** Given an initial guess \vec{x}_0
- 2 For $k = 0, 1, 2, \ldots$ until converge

$$\vec{x}_{k+1} = \vec{x}_k - H_k^{-1}\vec{g}_k.$$

Descent direction

- The direction $p_k = -H_k^{-1}g_k$ is called Newton's direction
- Is p_k a descent direction? (what's the definition of descent directions?)
- We only need to check if $\vec{g}_k^T \vec{p}_k < 0$.

$$\vec{g}_k^T \vec{p}_k = -\vec{g}_k^T H_k^{-1} \vec{g}_k.$$

Thus, \vec{p}_k is a descent direction if H^{-1} is positive definite.

- For a symmetric matrix H, the following conditions are equivalent
- *H* is positive definite.
- H^{-1} is positive definite.
- All the eigenvalues of *H* are positive.

Some properties of eigenvalues/eigenvectors

• A symmetric matrix *H*, of order *n* has *n* real eigenvalues and *n* real and linearly independent (orthogonal) eigenvectors

$$\begin{aligned} Hv_1 &= \lambda_1 v_1, \quad Hv_2 &= \lambda_2 v_2, \quad \dots, Hv_n &= \lambda_n v_n \\ \bullet \text{ Let } V &= [v_1 \quad v_2 \dots v_n], \quad \Lambda &= \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & \lambda_n \end{bmatrix}, \quad HV &= V\Lambda. \end{aligned}$$
$$\bullet \text{ If } \lambda_1, \quad \lambda_2, \dots, \lambda_n \text{ are nonzero, since } H &= V\Lambda V^{-1}, \\ H^{-1} &= V\Lambda^{-1}V^{-1}, \quad \Lambda^{-1} &= \begin{bmatrix} 1/\lambda_1 & & & \\ & & 1/\lambda_2 & & \\ & & & 1/\lambda_n \end{bmatrix} \end{aligned}$$
The eigenvalues of H^{-1} are $\frac{1}{\lambda_1}, \quad \frac{1}{\lambda_2}, \dots, \frac{1}{\lambda_n}$.

How to solve $H\vec{p} = -\vec{g}$?

• For a symmetric positive definite matrix H, $H\vec{p} = -\vec{g}$ can be solved by Cholesky decomposition, which is similar to LU decomposition, but is only half computational cost of LU decomposition.

• Let $H = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix}$, where $h_{12} = h_{21}$, $h_{13} = h_{31}$, $h_{23} = h_{32}$. Cholesky decomposition makes $H = LL^T$, where L is a lower triangular matrix, $L = \begin{bmatrix} \ell_{11} \\ \ell_{21} & \ell_{22} \\ \ell_{31} & \ell_{32} & \ell_{33} \end{bmatrix}$

- Using Cholesky decomposition, H\$\vec{p}\$ = -\$\vec{g}\$ can be solved by
 Compute H = LL^T
 \$\vec{p}\$ = -(L^T)⁻¹L⁻¹\$\vec{g}\$
- In Matlab, use $p = -H \setminus g$. Don't use inv(H).

The Cholesky decomposition

For
$$i = 1, 2, ..., n$$

 $\ell_{ii} = \sqrt{h_{ii}}$
For $j = i + 1, i + 2, ..., n$
 $\ell_{ji} = \frac{h_{ji}}{\ell_{ii}}$
For $k = i + 1, i + 2, ..., j$
 $h_{jk} = h_{jk} - \ell_{ji}\ell_{ki}$

$$\begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} = LL^{T} = \begin{bmatrix} \ell_{11}^{2} & \ell_{11}\ell_{21} & \ell_{11}\ell_{31} \\ \ell_{11}\ell_{21} & \ell_{21}^{2} + \ell_{22}^{2} & \ell_{21}\ell_{31} + \ell_{22}\ell_{32} \\ \ell_{11}\ell_{33} & \ell_{21}\ell_{31} + \ell_{22}\ell_{32} & \ell_{31}^{2} + \ell_{32}^{2} + \ell_{33}^{2} \end{bmatrix}$$

$$\ell_{11} = \sqrt{h_{11}} \quad h_{22}^{(2)} = h_{22} - \ell_{21}\ell_{21} \\ \ell_{21} = h_{21}/\ell_{11} \quad h_{32}^{(2)} = h_{32} - \ell_{21}\ell_{31} \\ \ell_{31} = h_{31}/\ell_{11} \quad h_{33}^{(2)} = h_{33} - \ell_{31}\ell_{31} \\ \ell_{33} = \sqrt{h_{33}^{(2)} - \ell_{32}\ell_{32}}$$

Theorem

Suppose f is twice differentiable. $\nabla^2 f$ is continuous in a neighborhood of \vec{x}^* and $\nabla^2 f(\vec{x}^*)$ is positive definite, and if \vec{x}_0 is sufficiently close to \vec{x}^* , the sequence converges to \vec{x}^* quadratically.

Three problems of Newton's method

H may not be positive definite ⇒ Modified Newton's method + Line search.

- **2** *H* is expensive to compute \Rightarrow Quasi-Newton.
- H^{-1} is expensive to compute \Rightarrow Conjugate gradient.