Numerical Optimization

Unit 2：Multivariable optimization problems

Che－Rung Lee

Scribe：張雅芳

February 28， 2011

Partial derivative of a two variable function

- Given a two variable function $f\left(x_{1}, x_{2}\right)$.
- The partial derivative of f with respect to x_{i} is

$$
\left\{\begin{array}{l}
\frac{\partial f}{\partial x_{1}}=\lim _{h \rightarrow 0} \frac{f\left(x_{1}+h, x_{2}\right)-f\left(x_{1}, x_{2}\right)}{h} \\
\frac{\partial f}{\partial x_{2}}=\lim _{h \rightarrow 0} \frac{f\left(x_{1}, x_{2}+h\right)-f\left(x_{1}, x_{2}\right)}{h}
\end{array}\right.
$$

- The meaning of partial derivative: let $F\left(x_{1}\right)=f\left(x_{1}, v\right)$ and $G\left(x_{2}\right)=f\left(u, x_{2}\right)$,

$$
\begin{aligned}
& \frac{\partial f}{\partial x_{1}}\left(x_{1}, v\right)=F^{\prime}\left(x_{1}\right) . \\
& \frac{\partial f}{\partial x_{2}}\left(u, x_{2}\right)=G^{\prime}\left(x_{2}\right) .
\end{aligned}
$$

Gradient

Definition

The gradient of a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a vector in \mathbb{R}^{n} defined as

$$
\vec{g}=\nabla f(\vec{x})=\left(\begin{array}{c}
\partial f / \partial x_{1} \\
\vdots \\
\partial f / \partial x_{n}
\end{array}\right), \text { where } \vec{x}=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)
$$

Directional derivative

Definition

The directional derivative of a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ in the direction \vec{p} is defined as

$$
D(f(\vec{x}), \vec{p})=\lim _{h \rightarrow 0} \frac{f(\vec{x}+h \vec{p})-f(x)}{h}
$$

Remark

If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuously differentiable in a neighborhood of \vec{x},

$$
D(f(\vec{x}), \vec{p})=\nabla f(x)^{T} \vec{p}
$$

for any vector \vec{p}.

The descent directions

- A direction \vec{p} is called a descent direction of $f(\vec{x})$ at \vec{x} if $D\left(f\left(\overrightarrow{x_{0}}\right), \vec{p}\right)<0$.
- If f is smooth enough, \vec{p} is a descent direction if $f\left(\vec{x}_{0}\right)^{T} \vec{p}<0$.
- Which direction \vec{p} makes $f\left(\overrightarrow{x_{0}}+\vec{p}\right)$ decreasing most?
- Mean Value theorem

$$
f\left(\overrightarrow{x_{0}}+\vec{p}\right)=f\left(\overrightarrow{x_{0}}\right)+\nabla f\left(\overrightarrow{x_{0}}+\alpha \vec{p}\right)^{\top} \vec{p}
$$

- $\vec{p}=-\nabla f\left(\overrightarrow{x_{0}}\right)$ is called the steepest descent direction of $f(x)$ at x_{0}.

$$
\begin{aligned}
f\left(\overrightarrow{x_{0}}+\vec{p}\right) & =f\left(\overrightarrow{x_{0}}\right)+\nabla f\left(\overrightarrow{x_{0}}+\alpha \vec{p}\right)^{\top} \vec{p} \\
& \approx f\left(\overrightarrow{x_{0}}\right)-\nabla f\left(\overrightarrow{x_{0}}\right)^{T} \nabla f\left(\overrightarrow{x_{0}}\right)
\end{aligned}
$$

The steepest descent algorithm

The steepest descent algorithm

For $k=1,2, \ldots$ until convergence
Compute $\overrightarrow{p_{k}}=-\nabla f\left(x_{k}\right)$
Find $\alpha_{k} \in(0,1)$ s,t, $F\left(\alpha_{k}\right)=f\left(\overrightarrow{x_{k}}+\alpha_{k} \overrightarrow{p_{k}}\right)$ is minimized.
$\overrightarrow{x_{k+1}}=\overrightarrow{x_{k}}+\alpha_{k} \overrightarrow{p_{k}}$

- You can use any single variable optimization techniques to compute α_{k}.
- If $F\left(\alpha_{k}\right)=f\left(\overrightarrow{x_{k}}+\alpha_{k} \overrightarrow{p_{k}}\right)$ is a quadratic function, α_{k} has a theoretical formula. (will be derived in next slides.)
- If $F\left(\alpha_{k}\right)=f\left(\overrightarrow{x_{k}}+\alpha_{k} \overrightarrow{p_{k}}\right)$ is more than a quadratic function, we may approximate it by a quadratic model and use the formula to solve α_{k}.
- Higher order polynomial approximation will be mentioned in the line search algorithm.

Quadratic model

- If $f(\vec{x})$ is a quadratic function, we can write it as

$$
f(x, y)=a x^{2}+b x y+c y^{2}+d x+e y+f(0,0)
$$

- If f is smooth, the derivatives of f are

$$
\begin{gathered}
\frac{\partial f}{\partial x}=2 a x+b y+d, \quad \frac{\partial f}{\partial y}=2 c y+b x+e \\
\frac{\partial^{2} f}{\partial x^{2}}=2 a, \quad \frac{\partial^{2} f}{\partial y^{2}}=2 c, \quad \frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial^{2} f}{\partial y \partial x}=b
\end{gathered}
$$

- Let $\vec{x}=\binom{x}{y}, f(\vec{x})$ can be expressed as

$$
f(\vec{x})=\frac{1}{2} \vec{x}^{T}\left(\begin{array}{cc}
2 a & b \\
b & 2 c
\end{array}\right) \vec{x}+\vec{x}^{T}\binom{d}{e}+f(\overrightarrow{0})
$$

Gradient and Hessian

- The gradient of f, as defined before, is

$$
g(\vec{x})=\nabla f(\vec{x})=\binom{\frac{\partial f}{\partial x}}{\frac{\partial f}{\partial y}}=\left(\begin{array}{cc}
2 a & b \\
b & 2 c
\end{array}\right) \vec{x}+\binom{d}{e}
$$

- The second derivative, which is a matrix called Hessian, is

$$
\nabla^{2} f(\vec{x})=H(\vec{x})=\left(\begin{array}{cc}
\frac{\partial f}{\partial x^{2}} & \frac{\partial f}{\partial x \partial y} \\
\frac{\partial f}{\partial y \partial x} & \frac{\partial f}{\partial y^{2}}
\end{array}\right)=\left(\begin{array}{cc}
2 a & b \\
b & 2 c
\end{array}\right)
$$

- Therefore, $f(\vec{x})=1 / 2 \vec{x}^{\top} H(\overrightarrow{0}) \vec{x}+g(\overrightarrow{0})^{T} \vec{x}+f(\overrightarrow{0})$,

$$
\nabla f(\vec{x})=H \vec{x}+\vec{g}, \text { and } \nabla^{2} f=H
$$

- In the following lectures, we assume H is symmetric. Thus, $H=H^{T}$.

Optimal α_{k} for quadratic model

- We denote $H_{k}=H\left(\vec{x}_{k}\right), \overrightarrow{g_{k}}=\vec{g}\left(\vec{x}_{k}\right)$, and $f_{k}=f\left(\vec{x}_{k}\right)$.
- Also, $H=H(\overrightarrow{0}), \vec{g}=\vec{g}(\overrightarrow{0})$, and $f=f(\overrightarrow{0})$.

$$
\begin{aligned}
F(\alpha) & =f\left(\vec{x}_{k}+\alpha \vec{p}_{k}\right) \\
& =\frac{1}{2}\left(\vec{x}_{k}+\alpha \vec{p}_{k}\right)^{T} H\left(\vec{x}_{k}+\alpha \vec{p}_{k}\right)+g^{T}\left(\vec{x}_{k}+\alpha \vec{p}_{k}\right)+f(\overrightarrow{0}) \\
& =\frac{1}{2} \vec{x}_{k}^{T} H \vec{x}_{k}+g^{T} \vec{x}_{k}+f(\overrightarrow{0})+\alpha\left(H \vec{x}_{k}+\vec{g}\right)^{T} \vec{p}_{k}+\frac{\alpha^{2}}{2} \vec{p}_{k}^{T} H \vec{p}_{k} \\
& =f_{k}+\alpha \vec{g}_{k}^{T} \vec{p}_{k}+\frac{\alpha^{2}}{2} \vec{p}_{k}^{T} H \vec{p}_{k} \\
F^{\prime}(\alpha) & =\vec{g}_{k}^{T} \vec{p}_{k}+\alpha \vec{p}_{k}^{T} H \vec{p}_{k}
\end{aligned}
$$

The optimal solution of α_{k} is at $F^{\prime}(\alpha)=0$, which is $\alpha_{k}=\frac{-\vec{g}_{k}^{\top} \vec{p}_{k}}{\vec{p}_{k}^{\top} H \vec{p}_{k}}$

Optimal condition

Theorem (Necessary and sufficient condition of optimality)

- Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be continuously differentiable in D. If $\vec{x}^{*} \in D$ is a local minimizer, $\nabla f\left(\vec{x}^{*}\right)=0$ and $\nabla^{2} f(\vec{x})$ is positive semidefinite.
- If $\nabla f\left(\vec{x}^{*}\right)=0$ and $\nabla^{2} f(\vec{x})$ is positive definite, then \vec{x}^{*} is a local minimizer.

Definition

- A matrix H is called positive definite if for any nonzero vector $\vec{v} \in \mathbb{R}^{n}, \vec{v}^{\top} H \vec{v}>0$.
- H is called positive semidefinite if $\vec{v}^{\top} H \vec{v} \geq 0$ for all $\vec{v} \in \mathbb{R}^{n}$.
- H is negative definite or negative semidefinite if $-H$ is positive definite or positive semidefinite.
- H is indefinite if it is neither positive semidefinite nor negative semidefinite.

Convergence of the steepest descent method

Theorem (Convergence theorem of the steepest descent method)

If the steepest descent method converges to a local minimizer \vec{x}^{*}, where $\nabla^{2} f(\vec{x})$ is positive definite, and $e_{\max }$ and $e_{\min }$ are the largest and the smallest eigenvalue of $\nabla^{2} f(\vec{x})$, then

$$
\lim _{k \rightarrow \infty} \frac{\left\|\vec{x}_{k+1}-\vec{x}^{*}\right\|}{\left\|\vec{x}_{k}-\vec{x}^{*}\right\|} \leq\left(\frac{e_{\max }-e_{\min }}{e_{\max }+e_{\min }}\right)
$$

Definition

For a scalar λ and an unit vector $v,(\lambda, v)$ is an eigenpair of of a matrix H if $H v=\lambda v$. The scalar λ is called an eigenvalue of H, and v is called an eigenvector.

Newton's method

- We use the quadratic model to find the step length α_{k}. Can we use the quadratic model to find the search direction \vec{p}_{k} ?
- Yes, we can. Recall the quadratic model (now \vec{p} is the variable.)

$$
f\left(\vec{x}_{k}+\vec{p}\right) \approx \frac{1}{2} \vec{p}^{T} H_{k} \vec{p}+\vec{p}^{T} \vec{g}_{k}+f_{k}
$$

- Compute the gradient $\nabla_{\vec{p}} f\left(\vec{x}_{k}+\vec{p}\right)=H_{k} \vec{p}+\vec{g}_{k}$
- The solution of $\nabla_{\vec{p}} f\left(\vec{x}_{k}+\vec{p}\right)=0$ is $\vec{p}_{k}=-H_{k}^{-1} \vec{g}_{k}$.
- Newton's method uses p_{k} as the search direction

Newton's method

(1) Given an initial guess \vec{x}_{0}
(2) For $k=0,1,2, \ldots$ until converge

$$
\vec{x}_{k+1}=\vec{x}_{k}-H_{k}^{-1} \vec{g}_{k} .
$$

Descent direction

- The direction $p_{k}=-H_{k}^{-1} g_{k}$ is called Newton's direction
- Is p_{k} a descent direction? (what's the definition of descent directions?)
- We only need to check if $\vec{g}_{k}^{T} \vec{p}_{k}<0$.

$$
\vec{g}_{k}^{T} \vec{p}_{k}=-\vec{g}_{k}^{T} H_{k}^{-1} \vec{g}_{k} .
$$

Thus, \vec{p}_{k} is a descent direction if H^{-1} is positive definite.

- For a symmetric matrix H, the following conditions are equivalent
- H is positive definite.
- H^{-1} is positive definite.
- All the eigenvalues of H are positive.

Some properties of eigenvalues/eigenvectors

- A symmetric matrix H, of order n has n real eigenvalues and n real and linearly independent (orthogonal) eigenvectors

$$
H v_{1}=\lambda_{1} v_{1}, \quad H v_{2}=\lambda_{2} v_{2}, \quad \ldots, H v_{n}=\lambda_{n} v_{n}
$$

- Let $V=\left[\begin{array}{llll}v_{1} & v_{2} & \ldots & v_{n}\end{array}\right], \Lambda=\left[\begin{array}{llll}\lambda_{1} & & & \\ & \lambda_{2} & & \\ & & \ddots & \\ & & & \lambda_{n}\end{array}\right], H V=V \Lambda$.
- If $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are nonzero, since $H=V \wedge V^{-1}$,

$$
H^{-1}=V \Lambda^{-1} V^{-1}, \Lambda^{-1}=\left[\begin{array}{cccc}
1 / \lambda_{1} & & & \\
& 1 / \lambda_{2} & & \\
& & \ddots & \\
& & & 1 / \lambda_{n}
\end{array}\right]
$$

The eigenvalues of H^{-1} are $\frac{1}{\lambda_{1}}, \frac{1}{\lambda_{2}}, \ldots, \frac{1}{\lambda_{n}}$.

How to solve $H \vec{p}=-\vec{g}$?

- For a symmetric positive definite matrix $H, H \vec{p}=-\vec{g}$ can be solved by Cholesky decomposition, which is similar to LU decomposition, but is only half computational cost of LU decomposition.
- Let $H=\left[\begin{array}{lll}h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33}\end{array}\right]$, where $h_{12}=h_{21}, h_{13}=h_{31}, h_{23}=h_{32}$.

Cholesky decomposition makes $H=L L^{T}$, where L is a lower triangular matrix, $L=\left[\begin{array}{lll}\ell_{11} & & \\ \ell_{21} & \ell_{22} & \\ \ell_{31} & \ell_{32} & \ell_{33}\end{array}\right]$

- Using Cholesky decomposition, $H \vec{p}=-\vec{g}$ can be solved by
(1) Compute $H=L L^{T}$
(2) $\vec{p}=-\left(L^{T}\right)^{-1} L^{-1} \vec{g}$
- In Matlab, use $p=-H \backslash g$. Don't use $\operatorname{inv}(H)$.

The Cholesky decomposition

$$
\begin{gathered}
\text { For } i=1,2, \ldots, n \\
\quad \ell_{i i}=\sqrt{h_{i i}}
\end{gathered}
$$

$$
\text { For } j=i+1, i+2, \ldots, n
$$

$$
\ell_{j i}=\frac{h_{j i}}{\ell_{i i}}
$$

$$
\text { For } k=i+1, i+2, \ldots, j
$$

$$
h_{j k}=h_{j k}-\ell_{j i} \ell_{k i}
$$

$$
\left[\begin{array}{lll}
h_{11} & h_{12} & h_{13} \\
h_{21} & h_{22} & h_{23} \\
h_{31} & h_{32} & h_{33}
\end{array}\right]=L L^{T}=\left[\begin{array}{ccc}
\ell_{11}^{2} & \ell_{11} \ell_{21} & \ell_{11} \ell_{31} \\
\ell_{11} \ell_{21} & \ell_{21}^{2}+\ell_{22}^{2} & \ell_{21} \ell_{31}+\ell_{22} \ell_{32} \\
\ell_{11} \ell_{33} & \ell_{21} \ell_{31}+\ell_{22} \ell_{32} & \ell_{31}^{2}+\ell_{32}^{2}+\ell_{33}^{2}
\end{array}\right]
$$

$$
\begin{array}{ll}
\ell_{11}=\sqrt{h_{11}} & h_{22}^{(2)}=h_{22}-\ell_{21} \ell_{21} \\
\ell_{21} & =h_{21} / \ell_{11}
\end{array} h_{32}^{(2)}=h_{32}-\ell_{21} \ell_{31} \quad \ell_{22}=\sqrt{h_{22}^{(2)}}
$$

$$
\ell_{21}=h_{21} / \ell_{11} \quad h_{32}^{(2)}=h_{32}-\ell_{21} \ell_{31}
$$

$$
\ell_{31}=h_{31} / \ell_{11} \quad h_{33}^{(2)}=h_{33}-\ell_{31} \ell_{31}
$$

$$
\ell_{32}=h_{32}^{(2)} / \ell_{22}
$$

$$
\ell_{33}=\sqrt{h_{33}^{(2)}-\ell_{32} \ell_{32}}
$$

Convergence of Newton's method

Theorem

Suppose f is twice differentiable. $\nabla^{2} f$ is continuous in a neighborhood of \vec{x}^{*} and $\nabla^{2} f\left(\vec{x}^{*}\right)$ is positive definite, and if \vec{x}_{0} is sufficiently close to \vec{x}^{*}, the sequence converges to \vec{x}^{*} quadratically.

Three problems of Newton's method
(1) H may not be positive definite \Rightarrow Modified Newton's method + Line search.
(2) H is expensive to compute \Rightarrow Quasi-Newton.
(3) H^{-1} is expensive to compute \Rightarrow Conjugate gradient.

