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1 Polynomial of matrix A

1.1 Characteristic polynomial of matrix A

PA(x) = |A− xI|.

example: given

A =

[
1 4
3 2

]
,

PA(x) = |A− xI| =
∣∣∣∣ 1− x 4

3 2− x

∣∣∣∣ = x2 − 3x− 10.

Let PA(x) = 0, then x1 = −5, x2 = 2, which are the eigenvalues of matrix A. This
polynomial encodes several important properties of the matrix, most notably its eigenvalues,
its determinant and its trace. [wikipedia]

1.2 Cayley–Hamilton theorem

Let PA(x) be the Characteristic polynomial of matrix A, then

PA(A) = 0.

try it:
PA(A) = A2 − 3A− 10I

=

[
13 12
9 16

]
− 3

[
1 4
3 2

]
− 10

[
1 0
0 1

]
=

[
0 0
0 0

]
.

A bogus proof: p(A) = det(AI −A) = det(A−A) = 0.
formal proof:
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PA(x) =
n∑

i=1

aix
i

⇒ PA(A) =
n∑

i=1

aiA
i

=
n∑

i=1

ai(XΛX−1)
i

=
n∑

i=1

aiXΛiX−1

= X(
n∑

i=1

aiΛ
i)X−1

= X


∑n

i=1 aiλ
i
1 ∑n

i=1 aiλ
i
2 0

0 ∑n
i=1 aiλ

i
3

. . .
∑n

i=1 aiλ
i
n

X−1

= X


PA(λ1)

PA(λ2) 0
0 PA(λ3)

. . . PA(λn)

X−1

= 0,

Since λ1, λ2, ..., λn, are root of PA(x) = 0.

1.3 express a matrix by its characteristic polynomial

We can use polynomials of A to express any functions of A if A is diagonalizable.

f(x) = x−1 = a1x
1 + ...+ aix

i.

A−1 = f(A).

example: given

A =

[
1 4
3 2

]
the eigenvalues of A are λ1 = 5, λ2 = −2.

P (A) = A−1 = x2 + bx+ c

P (5) = f(5) = 1/5 = (1/5)2 + (1/5)b+ c
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P (−2) = f(−2) = −1/2 = (−1/2)2 + (−1/2)b+ c

⇒ b = −2.9, c = −10.3

⇒ P (x) = x2 − 2.9x− 10.3

P (A) = A2 − 2.9A− 10.3I = A−1

.(check by hand)
We can replace the operation on matrix A by with a corresponding polynomial, the

coeffients of the polynomial are computed similarly.

1.4 interpolation and approximation of polynomial

• Interpolation
P (x) = xn + an−1x

n−1 + ...+ a1x+ a0

find an−1, ..., a0, such that for all λi, P (λi) = f(λi).


λn−1
1 λn−2

1 . . . λ1 1

λn−1
2 λn−2

2 . . . λ2 1
...

...
λn−1
n λn−2

n . . . λn 1

 ∗

an−1

an−2
...
a1
a0

 =


f(λ1)− λn1
f(λ2)− λn2

...
f(λn)− λnn


That is the form of Ax = b, where A ∈ Rn×n;x, b ∈ Rn×1.

• Approximation use low-dimensional polynomial to approximate high-dimensional polt-
nomial.

P (x) = akx
k + ak−1x

k−1 + ...+ a1x+ a0

find an−1, ..., a0, such that for all λi, P (λi) ≈ f(λi).


λk1 λk−2

1 . . . λ1 1

λk2 λk−2
2 . . . λ2 1

...
...

λkn λk−2
n . . . λn 1

 ∗


ak
ak−1

...
a1
a0

 ≈

f(λ1)
f(λ2)

...
f(λn)


That is the form of Ax ≈ b, where A ∈ Rn×k;x ∈ Rk×1; b ∈ Rn×1, and k < n. We can
treat it as a least squares problem and solve x for the polynomial coefficients.

1.5 Krylov subspace

An m-dimentional Krylov subspace of A is defined as follows:

Km(A, ~q1) = span{~q1, A~q1, A2~q1, ..., A
m−1~q1}.

Different ~q1 results in different subspace Km(A~q1).
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Since the above operation is numerically unstable, we use Arnoldi mehtod to generate an
equvalent subspace. The basic idea of Arnoldi method is similar to Gram-Schmidt process.

for i = 1...m do
~yi = A~qi
orthogonalize ~yi against current subspace Qi such that
~yi = Qi

~hi + ~z
if ||~z|| euqals 0 then

reach invariant subspace
breaktheloop

end
~qi+1 = ~z/||~z||
Qi+1 = [Qi qi+1]

end

Then span{~q1, ~q2, ~q3, ..., ~qm} = span{~q1, A~q1, A2~q1, ..., A
m−1~q1}.
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