Advanced Numerical Methods January 5, 2012

Lecture Notes 10: 3.5 & 3.6 Eigenvalue problems
Lecturer: Che-Rung Lee Scribe: Carl Yu

1 Symmetric Eigenvalue problems

e Bisection method

e Singular value decomposition (SVD)

1.1 Bisection method

Suppose z1 < z2, the number of eigenvalues of A in the interval [z1, z2) equals to
(number of negative eigenvalues of (A — z31)) - (number of negative eigenvalues of
(A—21))
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Figure 1: Bisection method

Question : B = A — 31, what’s the property between A and B’s eigenvector and eigen-
value 7
= B’s eigenvector = A’s eigenvector
= B’s eigenvalue = A’s eigenvalue make a left shift of 3

Theorem : LDLT decomposition :

1. When A is symmetric, one can decompose A = LDL”

< proof >
A = LU= LD(D™'U), where D = diag(U)
AT = (D'U)'DTLT = A, where L = (D7'U)T
= A = LDL”
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Algorithm 1 Bisection method (A4, a, b, €)

1. n, = number of negative eigenvalues of (A — al)
2. mp = number of negative eigenvalues of (A — bI)
3. if (ng = ny)

4. stop

5. enque(a ,ng, b, ny)

6. while queue is not empty

7. deque(low, ny, up, ny)

8. if (n, == ny)

9. stop
10. else if (up — low < ¢)
11. report eigenvalue = %
12. else
13. mid = “2tow
14. ny,=number of negative eigenvalues of (A — mid x I)
15. enque(low, ny, mid, ny,)
16. enque(mid, Ny, up, ny,)
17. end if

18. end while
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Note : In Cholesky decomposition, matrix A has to be both symmetric and positive
definite.
However, in LDLT decomposition, matrix A only has to be symmetric.

2. Inertia(A) = Inertia(LDLT)
As long as L is nonsingular = Inertia(A) = Inertia(D)

< proof > Suppose exists B such that B =Y 'AY, A and B are similiar.

A = XAXx!
= B = Y 'AY =Y 'XAX'Y = ZAZ!

3. Suppose A is symmetric tridiagonal

I al — =z b1
A—=zI = b @z
bn—l
i bp—1 an—z
= LDLT
M1 dy 1 U
L1 da 1
ln—l
L lp—1 1 dy, 1
b2
whered; = (a;—z) — ——
di—1

Question : What if the d; have zeros?
= Then z is A’s eigenvalue.

Question : How to calculate Inertia(D)?
= From the above, we can calculate how many d; that is positive, negative or
Zero.

Example : D e R

dy
da
D= ds
dy
ds

where dy,ds > 0, d3,dy <0, ds =0 = Inertia(D) = (2, 1, 2)
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1.2 Singular value decomposition (SVD)
A € R™" and m > n, there exist orthogonal matrix U and V such that A = UXV7T,

g1
02
where ¥ = ) withoy >01>--->0,>0,U € R™*" and V € R"*"
On
U= (ui, d, - -, Up), V = (i, 03, .-+, V), and o1, o1, -+, oy are called the singular
values of A
n 2 n VT m A =m U m 2 m VT
ml A =n U
(a) m>n (b) m<mn
Figure 2: Singular value decomposition
1. Av; = o0
< proof >
AV = Ux(VTVY)
= UX
= (Avi, Avg, -+, Avp) = (01Ul ogud, -+, Onlip)
2. AT Av; = ooy
AAT G = o2
< proof > A=U0UxvT AT =vxUuT
ATA = vyvutusv?
= vyv?h
= VY2V! since AT A is symmetric
= ATAv; = o?v;
o?vi
o2,
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AAT = uxvTvxsu?
Ux2ur

= (o) || ()

(m —n)

Note : ATA and AAT are both symmetric
< proof >
(ATA)T — AT(AT)T — ATA
(AAT)T:(AT)TAT:AAT

Note : ATA € R™" the X of ATAis (02, ,02)
However, since AAT € R™*™ the ¥ of AAT is (¢3,--+,02,0,---,0) which has
(m-n) zeros.

[All2 = o1
I
“) e - i) . n 1
Definition : For vector & = gl = O wP)r, p=1,2,--+ 00
Tn

For matrix A, ||All, = max)z|,—1[[AZ||,

< proof >
Iz|3 = 'z
max||AZ||? = max(AZ)T(AZ)
= maxi’ ATAZ
At AT o

= max W, where Hpr =1
2

= 0’1

Example : |A7!y = é
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4. Calculate Singular value decomposition (using givens rotation)

r T x X
A = T T x
T T T x
r T x
T T T T
= U1A = rree , U7 is the rotation matrix of column 3 and 4.
X X X X
0 x x x
r x T
= UU1A = x X x X , Us is the rotation matrix of column 2 and 3.
0 x x x
0 = =x
X X X X
= UsUU1A = 8 ); ); ;( , Us is the rotation matrix of column 1 and 2.
0 z = =z
x xz|x 0
0 z|x x . . .
= UsUU1 AV, = 0 zlx x|l V4 is the rotation matrix of row 3 and 4.
0 z|x x
r|lx 00
0|lx x|z . . .
= UsUU1 AV, V5 = olx x|z | V5 is the rotation matrix of row 2 and 3.
0|lx x|z
xr x 0 0
0 z « =x . . .
= UgUsUU AV, Vs = 0 x x x |’ Ug is the rotation matrix of column 3 and 4.
0 0 x x
x x 0 0
0 x x x . . .
= U;UgUsU U1 AVLVs = 00 x x |’ U7 is the rotation matrix of column 2 and 3.
0 0 = =z
x |0 O
0 z|x O . . .
= U;UgUsU U1 AV VEVY = 0 olx x|l Vs is the rotation matrix of row 3 and 4.
0 0lx x
x x 0 O
0 =z =z O . . .
= UgUr;UgU3U U1 AV V5V = 00 x x | Uy is the rotation matrix of column 3 and 4.
0 0 0 x
al bl 0 0
0 a9 by O
v % -6 0 0 as b3

0 0 0 aa



B = cTc
= GlTBGl = GferTC’Gl, where (G is the rotation matrix of column 1 and 2 in matrix B
GICT (CGh)
S——

B' BT

Note : Since GTCT and CG; are mutually transposed, we only have to look one
part and the other part is its transpose.

cos —sin |0 0
stn cos |0 O
G = 0 0 |00
0 0 00
= , we try to transform it to a bidiagonal form
= G9CG1 = , (G5 is the rotation matrix of row 1 and 2.
= GCG1Gs = , (73 is the rotation matrix of column 2 and 3.

= G4G2CG1G3y = , (G4 is the rotation matrix of row 2 and 3.

= G4G2CG1G3Gs = , G5 is the rotation matrix of column 3 and 4.

= GeG4G2CG1G3Gs = , G is the rotation matrix of row 3 and 4.

O O0Olo8 COOR OO0O8 COO8 OOoloX|l ocoos 8 O©olos’
COI8 8 OO&K8 K OOX I8 OKX X X OO0OK K|l ook & ©OolR &R
O HIB O K X K O O O OM X O O8|(X X O8 8 O o888 O
¥ U OO K X OO B|K X O 88 00 8 8/l 88 oo 8 8|oo

bidiagonal

= ycovT
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B = CTc

al 0 0 0 al b1 0 0
. by a2 0 O 0 ag by O
o 0 bg as 0 0 0 as b3
0 0 b3 ay 0 0 0 aq
a% a1b1 0 0
. a1bi a% + b% asby 0
- 0 asbsy CL% + b% asbs
0 0 agbg ai + bg
tridi;;mzal

Note : Since we have run so many QR decompositions,

r x—0 0 0
T . x z—0 0

the Ux Cx Vg in the end will become 0 0 . 0
= 0 0 0 z
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