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Lecture Notes 7: Eigenvalue Problem
Lecturer: Che-Rung Lee Scribe: Zhen-Yu Peng

3 Eigenvalue Problem

3.1 Definition

e Given an n X n matrix A, an eigenvalue A of A is a scalar such that AZ = A\Z for a
nonzero vector I, T is call an eigenvector.

e If there exists n linearly independent eigenvectors 1, Zo, ..., Zp, we said A is diago-
nalizable.
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e Given ), its eigenvector = 7
A = \¥

SAT - \E=0
S(A-XNZ=0

then we can use kernel to find the eigenvectors correspond to A.

kET(A — )\I) = {fl,a_fg, N ,fk}

e Given T, its eigenvalue = ?

AT =\

(Rayleigh quotient)

3.2 Power Method
e We can use this algorithm to find the eigenvector whose eigenvalue is the largest.
e Algorithm

1. Choose a random vector p, || 7p || = 1.
2. Fori=1, 2, 3, ..., until converge.

3. g = Ab_y
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e Shift Power Method
We can shift the eigenvalue to speed up.
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Converge rate: klg{)lo Tl = o]
If the rate is very small, the speed of convergence will be fast. Choose y which makes
% as small as possible.

e Invert Power Method
We can find the eigenvector whose eigenvaule is the smallest.
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e Shift and Invert Power Method
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