September 21, 23 and 30, 2011

Lecture Notes 2: Parallel matrix multiplication

Lecturer: Che-Rung Lee

Scribe: Po-Yi Hsu 100062647

1.3 Parallel matrix multiplication

1.3.1 Mesh parallel architecture

- As shown in Figure 1, processors can only communicate with their neighbors in mesh architecture.
- SUMMA algorithm

Let
$$A = \begin{pmatrix} \vec{a_1} & \vec{a_2} & \vec{a_3} & \vec{a_4} \end{pmatrix}$$
, $B = \begin{pmatrix} \vec{b_1}^T \\ \vec{b_2}^T \\ \vec{b_3}^T \\ \vec{b_4}^T \end{pmatrix}$.

- Then $C = A \cdot B = \sum_{i=1}^{4} \vec{a_i} \vec{b_i}^T$.
- Each iteration A broadcasts $\vec{a_i}$ along row and B broadcasts $\vec{b_i}$ along column, and processors will multiply them separately.

• At *i* iteration, we could get $\vec{a_i}\vec{b_i}^T$. So after 4 iterations we can get $\vec{a_1}\vec{b_1}^T + \vec{a_2}\vec{b_2}^T + \vec{a_3}\vec{b_3}^T + \vec{a_4}\vec{b_4}^T$ for the answer.

Figure 1: Mesh parallel architecture

Figure 2: SUMMA algorithm

Figure 3: Torus parallel architecture

1.3.2 Torus parallel architecture

- Torus architecture adds feedback lines to mesh architecture, as shown in Figure 3.
- Cannon's algorithm

Let
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{pmatrix}$$
, $B = \begin{pmatrix} b_{11} & b_{12} & b_{13} & b_{14} \\ b_{21} & b_{22} & b_{23} & b_{24} \\ b_{31} & b_{32} & b_{33} & b_{34} \\ b_{41} & b_{42} & b_{43} & b_{44} \end{pmatrix}$
Then $C = A \cdot B \begin{pmatrix} c_{11} & c_{12} & c_{13} & c_{14} \\ c_{21} & c_{22} & c_{23} & c_{24} \\ c_{31} & c_{32} & c_{33} & c_{34} \\ c_{41} & c_{42} & c_{43} & c_{44} \end{pmatrix}$

- We want each processor node to compute a c_{ij} in parallel.
- How to decide which node to compute which matrix elements?
- First, we place matrix elements as in Figure 4(a).
- As the algorithm progresses, the elements of A are passed left and elements of B are passed upward.
- We want elements are moved from their initial positions to align them so that the correct elements are multiplied with one another.
- From Figure 4(b), we observe some regularity. So we rearrange matrix elements as in Figure 5 and place them into processor nodes in Figure 6.
- Now at the first iteration, we could get multiplied elements of black cycles in Figure 4(b) whose elements are at the initial place in Figure 6.
- At the second iteration, as elements shifted by the colored arrow in Figure 6, we could get multiplied elements of same color cycles in Figure 4(b).

Figure 4: Try to find out some regularity

- Cannon's algorithm minimizes the communication among processor nodes.
- We also can replace matrix elements with matrix blocks.

$$A = \begin{pmatrix} \boxed{a_{11} & a_{12} & a_{13} & a_{14}} \\ \boxed{a_{21}} & \boxed{a_{22} & a_{23} & a_{24}} \\ \boxed{a_{31} & a_{32}} & \boxed{a_{33} & a_{34}} \\ \boxed{a_{41} & a_{42} & a_{43}} & \boxed{a_{44}} \end{pmatrix} \quad B = \begin{pmatrix} \boxed{b_{11}} & \boxed{b_{12}} & \boxed{b_{13}} & \boxed{b_{14}} \\ \boxed{b_{21}} & \boxed{b_{22}} & \boxed{b_{23}} & \boxed{b_{24}} \\ \boxed{b_{31}} & \boxed{b_{32}} & \boxed{b_{33}} & \boxed{b_{34}} \\ \boxed{b_{41}} & \boxed{b_{42}} & \boxed{b_{43}} & \boxed{b_{44}} \end{pmatrix}$$

a ₁₁ b ₁₁	$a_{12} b_{22}$	$a_{13} b_{33}$	a14 b44
$a_{22} b_{21} c_{21}$	$a_{23} b_{32} c_{22}$	$a_{24} b_{43} c_{23}$	$a_{21} b_{14} \\ c_{24}$
$a_{33} b_{31} \\ c_{31}$	$a_{34} b_{42} \\ c_{32}$	$a_{31} b_{13} \\ c_{33}$	$a_{32} b_{24} \\ c_{34}$
$a_{44} b_{41}$	$a_{41} b_{12}$	$a_{42} b_{23}$	$a_{43} b_{34}$
C41	c42	C43	C44

Figure 6: New matrix elements placement