PS3 Programming

Week 6. Math Libraries (Chap 16,17,18)

Outline

- Linear algebra
- FFT
- Multiprecision processing
- Monte Carlo methods
- Homework

LINEAR ALGEBRA

Linear algebra

- Vector library
 - dot product, cross product, vector length, …
- Matrix library (4x4)
 - Transport, scale, multiply, cast, split, rotation
- Large matrix library
 - Transport, scale, multiply, madd, nmsub, LU decomposition, solve triangular, solve general
- BLAS

Basic Linear Algebra Subroutines

- Over 50 subroutines
 - <u>http://www.netlib.org/blas</u>
 - Level 1: dot product, rotation, vector length...
 - Level 2: matrix-vector multiplication, Solve triangular system, ...
 - Level 3: matrix-matrix multiplication, ...
- It's for PowerPC and the SDK's BLAS (libblas)
 PPU has a complete library, but only few in SPU.

Multiprocessor matrix multiplication

- In /opt/cell/sdk/src/demos/matrix_mul
- Algorithm
 - PPU creates the matrix and SPU contexts
 - SPUs receive information and load matrix blocks
 - SPUs process the block matrix multiplication and then store back to memory

FAST FOURIER TRANSFORM

Do you remember what FFT is?

- Transform data from time domain to frequency domain
- Used in DSP, sampling, and many applications.
- A special matrix vector multiplication that can be done in O(n log n) : 1D FFT

in[2].real

in[2].imag

• Four floats for two complex numbers

in[1].imag

in[1].real

Ex: One dimensional problem

void fft_1d_r2(vector float *out, vector float *in, vector float *W, int log2_size)

- log2_size must be >=5 (size>=32)
- W is defined as

```
for (i=0;i<N/2;i+=2) {
    W[i] = cos((double)i*PI/N);
    W[i+1]= sin((double)i*PI/N);
}</pre>
```

The FFT library

- In /opt/cell/sdk/prototype/libfft
 - PPU's file is in /opt/cell/sdk/prototype/usr
 - SPUs' file is in /opt/cell/sdk/prototype/spu
- Functions
 - 1D problem: fft_1d_initialize, fft_1d_perform, fft_1d_terminate
 - 2D problem: fft_2d_initialize, fft_2d_perform, fft_2d_terminate

MULTIPRECISION PROCESS AND MONTE CARLO METHODS

Multiprecision process

- In the library: libmpm
- Big integer, big numbers
- Applications in encryption, numerical analysis, ...
- Basic functions: abs, add, sub, square, multiply, madd, cmpeq, cmpge, cmpgt, ...
- Division and modular: div, mod, mod_exp, ...

Monte Carlo methods

- In the library: libmc_rand
- Monte Carlo methods
 - Generate a series of random inputs
 - Send the random inputs into the simulated system
 - Analyze output statistics
- Random number generation

HOMEWORK

Homework

- Read chap 16,17,18
- Try the example of distributed matrix-matrix multiplication