
PS3 Programming

Week 4. Events, Signals, Mailbox

Chap 7 and Chap 13

Outline

• Event

– PPU’s event

– SPU’s event

• Mailbox

• Signal

• Homework

EVENT

PPU’s event

• PPU can enable events when creating SPE’s
context by spe_context_create

– Set the flag SPE_EVENTS_ENABLE

• Three steps to create an event

1. Create an event handler

2. Create and initialize the event

3. Register the event with the event handler

Event handler

• The definition of spe event handler

• There are 5 (SPE) events

– Ex: SPE_EVENT_SPE_STOPPED

• Events are listened/waited by calling
spe_event_wait

typedef struct spe_event_unit {

spe_context_ptr_t spe;

unsigned int events;

spe_event_data_t data;

} spe-event_unit_t

Example: monitor SPE stop

#include <stdio.h>

#include <stdlib.h>

#include <libspe2.h>

#define MAX_EVENTS 16

extern spe_program_handle_t spu_events;

int main(int argc, char **argv) {

int i, event_count;

spe_context_ptr_t ctx; /* Context */

unsigned int entry_point; /* Start address */

int retval; /* Return value */

spe_stop_info_t stop_info; /* Stop info */

spe_event_unit_t events[MAX_EVENTS]; /* Events to be

received */

/* Create the context */

ctx = spe_context_create(SPE_EVENTS_ENABLE, NULL);

Continue

spe_event_handler_ptr_t ehandler; /* Event handler */

spe_event_unit_t event; /* Event to be handled */

/* Create an event handler and register event */

ehandler = spe_event_handler_create();

event.spe = ctx;

event.events = SPE_EVENT_SPE_STOPPED;

spe_event_handler_register(ehandler, &event);

.../* Load the program handle into the context */

.../* Execute the program inside the context */

/* Receive events and analyze stop information */

event_count = spe_event_wait(ehandler, events,

MAX_EVENTS, 10);

printf("Number of events detected: %d\n", event_count);

.../* process the event */

SPU’s Event

• SPU has 12 (MFC) events

– Ex: MFC_TAG_STATUS_UPDATE

• Three steps for event handling

1. Select events of interest

2. Recognize event occurring

• Waiting, polling, and interrupt

3. Acknowledge events

ISR (interrupt service routine)

• Located at a special address (0x0000)

– The .interrupt section of SPU ELF file

– Register the route by declaring the ISR at
the .interrupt section

• Use spu_ienable() and spu_idisable() to start
and stop the interrupt signal

void interrupt_service(void)

__attribute__ ((section (".interrupt")));

Example

void interrupt_service(void) {

int dec = spu_read_decrementer();

printf("ISR: Decrementer = %d.\n", dec);

/* End loop in main function */

check_value = 1;

/* Acknowledge event detection */

spu_write_event_ack(MFC_DECREMENTER_EVENT);

/* Return to main function */

asm("iret");

}

Measure time in
SPU. See 11.3

#include <spu_mfcio.h>

void interrupt_service(void)

__attribute__ ((section (".interrupt")));

volatile unsigned int check_value = 0;

int main(unsigned long long speid, unsigned long long

argp, unsigned long long envp) {

/* Enable interrupt processing */

spu_ienable();

/* Write to the event mask */

spu_write_event_mask(MFC_DECREMENTER_EVENT);

/* Write to the decrementer and begin countdown */

spu_write_decrementer(10000);

/* Loop while waiting for interrupt */

while(check_value == 0);

return 0;

}

Main function

MAILBOX

Mailbox

• Small message (4 bytes) between SPU/PPU

• SPU to PPU

– SPU writes to out mbox

– PPU reads SPU’s out mbox

• PPU to SPU

– PPU write to SPU’s in mbox

– SPU reads its in mbox

• Use event to notify the arrival of mails

SPU’s code

include <spu_mfcio.h>

void interrupt_service(void)

__attribute__ ((section (".interrupt")));

volatile unsigned int check_value = 0;

int main(unsigned long long speid, unsigned long

long argp, unsigned long long envp) {

unsigned int mbox_content;

/* Write to the event mask */

spu_write_event_mask(MFC_IN_MBOX_AVAILABLE_EVENT);

/* Enable interrupt and wait for the interrupt */

spu_ienable();

while(!check_value);

/* Read mailbox and display result */

mbox_content = spu_read_in_mbox();

return 0;

}

SPU’s ISR

void interrupt_service(void) {

spu_write_event_ack(MFC_IN_MBOX_AVAILABLE_EVENT);

check_value++;

asm("iret");

}

PPU’s code
int main() {

int retval; spe_context_ptr_t spe;

unsigned int mbox_data[1];

/* Create context, load program, create thread*/

...

/* Write a value to the SPE's Incoming Mailbox */

mbox_data[0] = 0x12345678;

if(spe_in_mbox_status(spe))

spe_in_mbox_write(spe, mbox_data, 1,

SPE_MBOX_ALL_BLOCKING);

printf("Sent data = %x\n", mbox_data[0]);

/* Wait thread finish and deallocate the context */

...

}

SIGNALS

Signal and mailbox

• Same

– 32 bits, controlled by MFC, used for control

• Differences

– Signal has tag group id (DMA’s tag)

– Signal can be used directly between SPUs

– Signal has 1-1, n-1; mailbox only has 1-1

– Signal has two channels; mailbox has in/out mbox

– Signal will not be removed after read

Signal

• The signal send (SPU) is similar to mfc_put

– ls : source address at local store

– ea: distination

– tag, tid, rid are the same to mfc_put

• We will skip the details of using it since it is
too complicated

mfc_sndsig(volatile void *ls, uint64_t ea,

uint32_t tag, uint32_t, tid, uinit322_t rid)

HOMEWORK

Assignments

• Run the examples in chapter 13

• Continue the Huffman coding project.

– Use mailbox/event/ISR to inform the address of
next block to be process

– You can also try to use one of the SPU as the
master.

