CUDA Programming

Week 6. Fermi and OpenCL

Outline

Fermi
ATl dragon

OpenCL
Homework/Project

FERMI

History perspective

* G80 unifies graphics and computing parallel
processor

* GT200 extends the performance and
functionality of G8O0.

* Fermiis based on the feedbacks from all the
applications that were written on G80 and
GT200.

Comparison

GPU G80 GT200 Fermi

Transistors 681 million 1.4 billion 3.0 billion

CUDA Cores 128 240 512

Double Precision Floating None 30 FMA ops /clock | 256 FMA ops /clock

Point Capability

Single Precision Floating 128 MAD 240 MAD ops / 512 FMA ops /clock

Point Capability ops/clock clock

Special Function Units 2 2 4

(SFUs) / SM

Warp schedulers (per SM) 1 1 2

Shared Memory (per SM) 16 KB 16 KB Configurable 48 KB or
16 KB

L1 Cache (per SM) None None Configurable 16 KB or
48 KB

L2 Cache None None 768 KB

ECC Memory Support No No Yes

Concurrent Kernels No No Up to 16

Load/Store Address Width 32-bit 32-bit 64-bit

Important features

Improve double precision performance
ECC support

True Cache Hierarchy

More Shared Memory

Faster Context Switching

Faster Atomic Operations

Streaming multiprocessors

32 CUDA cores per SM, 4x over GT200

8x the peak double precision floating point
performance over GT200

Dual warp scheduler simultaneously schedules
and dispatches instructions from two
independent warps

64 KB of RAM with a configurable partitioning
of shared memory and L1 cache

Thread execution

* Optimized for OpenCL and Direct Compute
* Full IEEE 754-2008 32-bit and 64-bit precision

* Full 32-bit integer path with 64-bit extensions

* Improved Performance through predication
e 10x faster application context switching

* Concurrent kernel execution

* Out of Order thread block execution

* Dual overlapped memory transfer engines

Concurrent Kernel execution

Kerneld

Serial Kernel Execution Concurrent Kernel Execution

Memory system

Unified address space with full C++ support

Memory access instructions to support
transition to 64-bit addressing

Configurable L1 and Unified L2 Caches
First GPU with ECC memory support

Greatly improved atomic memory operation
performance

Configurable cache

. Fermi Memory Hierarchy
 Shared memory is not a Thread

cache.
#

L2 Cache

* 64K memory space is split

— Either 48K SM + 16K L1
— Or 16K L1 + 48K SM

Nexus: beside the hardware

* The first development environment designed

specifically to support massively parallel CUDA
C, OpenCL, and DirectCompute applications.

— Parallel-aware hardware source code debugging
— Performance analysis

* |Integrated in Visual Studio

Adopted from “An Introduction to OpenCL” by John Stone

OPENCL

What is OpenCL?

Open Computational Language
Cross-platform parallel computing API
C-like language for heterogeneous devices
Code is portable across devices:

— Correctness is guaranteed
— Performance is not guaranteed

OpenCL supports for AMD and NVIDIA GPUs,
x86 CPUs, IBM Cell and various hardware

Weaknesses of OpenCL 1.0

* OpenCL is a low-level API

— Developers are responsible for a lot of plumbing,
lots of objects/handles to keep track of

* Developers are responsible for thread-safety

— Some types of multi-accelerator codes are much
more difficult to write than in the CUDA

* Great need for OpenCL middleware and
libraries

Data Parallel Model

Work is submitted to devices by kernels

Kernels run over global dimension index ranges
(NDRange), broken up into “work groups” (block),
and “work items” (thread?)

Work items executing within the same work
group can synchronize with each other with
barriers or memory fences

Work items in different work groups can’t sync
with each other, except by launching a new
kernel

OpenCL NDRange

ol L]
Work Group i Global Size(0) 5
5-\""--\.____ T\H - ; I
xm I Group ID
P 0.0 0.1
Local Size(0) H}‘"h ’ ’
| ——— |
151 e .
:'.:‘:j == _1.0 1.1
=
2
o]
— ¥ |

Work Item

[Global Size(1)

Hardware abstraction

* OpenCL exposes CPUs, GPUs, and other
Accelerators as “devices”

* Each “device” contains one or more “compute
units”, i.e. cores, SMs, etc...

* Each “compute unit” contains one or more
SIMD “processing elements”

Memory system

~ global-large, high latency
__private—on-chip device registers

~ local-memory accessible from multiple PEs or
work items, SRAM or DRAM, must query...

~__constant—read-only constant cache

Device memory is managed explicitly by the
orogrammer, as with CUDA

Pinned memory buffer allocations are created
using the CL_MEM_USE_HOST _PTR flag

OpenCL Context

Contains one or more devices

OpenCL memory objects are associated with a
context, not a specific device

clCreateBuffer() emits error if an allocation is
too large for any device in the context

Each device needs its own work queue(s)

Memory transfers are associated with a
command queue (thus a specific device)

Multiple devices

Application

» Kemel —» Cmd Queue
Cmd Queue
Kernel —» Q
|
v \ 4
OpenCL Device| | OpenCL Device
100 D (O e LI T O
HE I RN
00| 00| [00) 00
OpenCL Context =181/ [RIRIjRISI| I8

CUDA and OpenCL teminology

CUDA terminology | OpenCL terminology

Thread Work-item
Thread block Work-group
Global memory Global memory
Constant memory Constant memory
Shared memory Local memory

Local memory Private memory

ATl

ATl RADEON STREAM

TECHNOLOGY

Hardware
Overview

* Astream core s
arranged as a
five-way very
long instruction
word (VLIW)
processor.

— Up to five scalar

operations can
be issued in a

VLIW instruction.

Ultra-Threaded Dispatch Processor

Compute Compute Compute
Unit Unit Unit
Stream Core
T-Processi ng

General-Purpose Registers

Compute
Unit

Instruction
and Control
Flow

Branch
Execution
Unit

AT| Stream Computing of OpenCL

Stream Applications

Libraries] [Third—F‘arty Tools]

A A
b |
oy v
OpenCL Runtime
A
A
Y
Y A Compute Abstraction Layer

AT Stream
GPUs

I Multicore P <
‘ CPUs
Y Y

NDRange

4—Global Domain s ———»

Work group

get_global size(0)

Work-Group| |Work-Group

get_global size(0)

Work-Group| |Work-Group

Waork-Group

Work-G roup
n

«— Global Domainy ——»

Work-Group
Work-Group Id = (Bx, By)

Wavefront Wavefront Wavefront
1 2

Wavefront Wavefront Wavefront

-~ - 1 # 3
Wavefront | Wavefront Waveﬁqnf
il _ﬂ-;
£

Ea
Ll

get_group size(l)
«—Work-Group Size Gy——»

- get group_ size (0]
-7 €———Work-Group Sizg Gx ———»

Wavefront and Work Item

e Wavefront ’

8 Work-ltem Work-ltem

W-lia = (0,0) . | W= (G- 1,0)
globalid = globalia =
(B+*Gs, By*Gy) (B*Gr + Gi-1, By*Gy)

Work-ltem Work-ltem

W-lia = (0,Gy-1) W-lia = (G1, Gy-1)
globalid = " " " lglobalid =

(B+*G, By*Gy + Gy-1) (Bx*Gx+-Gi-1,
By* Gyt Gy-1

ATl Compute Abstraction Layer (CAL)

* A device driver library that provides a forward-
compatible interface to ATI GPU

— Device-specific code generation
— Interoperability with 3D graphics APIs

— Resource management — —

Compute Device Compute Device

— Device management Executable Buffers

— Kernel loading and execution ¢ Jr

CAL Runtime }

Y '

— Multi-device support [

Compute Compute I Compute
Device 0 Device 1 Device n

Compute Device

Private Memory

Req Files

Compute Unit 7

i

F'nlvate Memory | -h-
Memory structure ; f
1
1 Pn::EL E.lem-
Fri‘-f oie Memory | Compute Unit 7 ! N
: J-ﬁ_r
Private Memory 4 ¢ T ¢ ¢
(Reg Fileg) 7
Local Mem. '
,_¢ ; o IMem| 1 L1 | [Color Bufer
F‘n:uc.L Elem_ A ‘
(ALU) @
. _ _ s
¢ H,'QT '.'.'.f% ¢ i 5 - &
Local M L ﬁ E
ocal Mem.
(LDs) 1 L1 Color Buffer &
; IMAGE / CONSTANT DATA CACHE (L2) ! ¥
be-m- - “1°r-t-""----- 17T T Treadany) T T T N
A A
Compute Device Y YYYY Y Host
Memory vram GLOBAL MEMORY CONSTANT MEMORY < " PCle

Device Scheduling

. G xxxxxx X @
STALL READY

" D@ XXX XXXX)
READY STALL

" QD G XX XX)
REALY STALL

- D <
READY STALL
0 20 40 &0 80

- = executing - = ready (not executing) @: stalled

OpenCL compilation flow

OpenCL
source

Built-In
Library

—h

pI——ocO |rFOSooD

v

LLVM IR

OpenCL Compiler

Linker

LLVM
Optimizer

LLVM AS

CPU

ATl IL

GPU

Useful links

* OpenCL Tutorial:
http://developer.amd.com/gpu/ATIStreamSDK
/pages/TutorialOpenCL.aspx

* ATl Stream Beta 2.0:
http://developer.amd.com/streambeta

* OpenCL Specification:
http://www.khronos.org/registry/cl/

http://developer.amd.com/gpu/ATIStreamSDK/pages/TutorialOpenCL.aspx
http://developer.amd.com/gpu/ATIStreamSDK/pages/TutorialOpenCL.aspx
http://developer.amd.com/streambeta
http://www.khronos.org/registry/cl/

HOMEWORK/PROJECT

Homework

* Try OpenCL on nVidea GTX and ATl Radeon

— | purchased a new machine equipped with ATI
Radeon
* OpenCL Implementations, Tutorials and
Sample codes

— http://www.khronos.org/developers/resources/o
pencl/#texamples

Project

 Read and implement some papers about GPU

— Designing efficient sorting algorithms for GPUs.
e http://mgarland.org/files/papers/gpusort-ipdps09.pdf
— Warp sort

* http://www.ipdps.org/ipdps2010/ipdps2010-
slides/session-05/Ye_ipdps10_slide.pdf

— Sample sorting
 http://arxiv.org/abs/0909.5649

— Sparse matrix-vector multiplication

* http://graphics.cs.uiuc.edu/~wnbell/publications/2009-
08-SC-SpMV/sc09-spmv-throughput.pdf

http://mgarland.org/files/papers/gpusort-ipdps09.pdf
http://mgarland.org/files/papers/gpusort-ipdps09.pdf
http://mgarland.org/files/papers/gpusort-ipdps09.pdf
http://mgarland.org/files/papers/gpusort-ipdps09.pdf
http://www.ipdps.org/ipdps2010/ipdps2010-slides/session-05/Ye_ipdps10_slide.pdf
http://www.ipdps.org/ipdps2010/ipdps2010-slides/session-05/Ye_ipdps10_slide.pdf
http://www.ipdps.org/ipdps2010/ipdps2010-slides/session-05/Ye_ipdps10_slide.pdf
http://www.ipdps.org/ipdps2010/ipdps2010-slides/session-05/Ye_ipdps10_slide.pdf
http://www.ipdps.org/ipdps2010/ipdps2010-slides/session-05/Ye_ipdps10_slide.pdf
http://www.ipdps.org/ipdps2010/ipdps2010-slides/session-05/Ye_ipdps10_slide.pdf
http://www.ipdps.org/ipdps2010/ipdps2010-slides/session-05/Ye_ipdps10_slide.pdf
http://www.ipdps.org/ipdps2010/ipdps2010-slides/session-05/Ye_ipdps10_slide.pdf
http://arxiv.org/abs/0909.5649
http://arxiv.org/abs/0909.5649
http://graphics.cs.uiuc.edu/~wnbell/publications/2009-08-SC-SpMV/sc09-spmv-throughput.pdf
http://graphics.cs.uiuc.edu/~wnbell/publications/2009-08-SC-SpMV/sc09-spmv-throughput.pdf
http://graphics.cs.uiuc.edu/~wnbell/publications/2009-08-SC-SpMV/sc09-spmv-throughput.pdf
http://graphics.cs.uiuc.edu/~wnbell/publications/2009-08-SC-SpMV/sc09-spmv-throughput.pdf
http://graphics.cs.uiuc.edu/~wnbell/publications/2009-08-SC-SpMV/sc09-spmv-throughput.pdf
http://graphics.cs.uiuc.edu/~wnbell/publications/2009-08-SC-SpMV/sc09-spmv-throughput.pdf
http://graphics.cs.uiuc.edu/~wnbell/publications/2009-08-SC-SpMV/sc09-spmv-throughput.pdf
http://graphics.cs.uiuc.edu/~wnbell/publications/2009-08-SC-SpMV/sc09-spmv-throughput.pdf
http://graphics.cs.uiuc.edu/~wnbell/publications/2009-08-SC-SpMV/sc09-spmv-throughput.pdf
http://graphics.cs.uiuc.edu/~wnbell/publications/2009-08-SC-SpMV/sc09-spmv-throughput.pdf
http://graphics.cs.uiuc.edu/~wnbell/publications/2009-08-SC-SpMV/sc09-spmv-throughput.pdf
http://graphics.cs.uiuc.edu/~wnbell/publications/2009-08-SC-SpMV/sc09-spmv-throughput.pdf

