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FERMI



History perspective

• G80 unifies graphics and computing parallel 
processor 

• GT200 extends the performance and 
functionality of G80. 

• Fermi is based on the feedbacks from all the 
applications that were written on G80 and 
GT200.



Comparison



Important features

• Improve double precision performance

• ECC support

• True Cache Hierarchy

• More Shared Memory

• Faster Context Switching

• Faster Atomic Operations



Streaming multiprocessors

• 32 CUDA cores per SM, 4x over GT200

• 8x the peak double precision floating point 
performance over GT200

• Dual warp scheduler simultaneously schedules 
and dispatches instructions from two 
independent warps

• 64 KB of RAM with a configurable partitioning 
of shared memory and L1 cache



Thread execution

• Optimized for OpenCL and Direct Compute

• Full IEEE 754-2008 32-bit and 64-bit precision

• Full 32-bit integer path with 64-bit extensions

• Improved Performance through predication

• 10x faster application context switching

• Concurrent kernel execution

• Out of Order thread block execution

• Dual overlapped memory transfer engines



Concurrent Kernel execution



Memory system

• Unified address space with full C++ support

• Memory access instructions to support 
transition to 64-bit addressing

• Configurable L1 and Unified L2 Caches

• First GPU with ECC memory support

• Greatly improved atomic memory operation 
performance



Configurable cache

• Shared memory is not a 
cache.

• 64K memory space is split 
for shared memory and L1 
cache

– Either 48K SM + 16K L1 

– Or 16K L1 + 48K SM



Nexus: beside the hardware

• The first development environment designed 
specifically to support massively parallel CUDA 
C, OpenCL, and DirectCompute applications.

– Parallel-aware hardware source code debugging

– Performance analysis

• Integrated in Visual Studio



OPENCL
Adopted from “An Introduction to OpenCL” by John Stone



What is OpenCL?

• Open Computational Language

• Cross-platform parallel computing API 

• C-like language for heterogeneous devices

• Code is portable across devices:

– Correctness is guaranteed

– Performance is not guaranteed

• OpenCL supports for AMD and NVIDIA GPUs, 
x86 CPUs, IBM Cell and various hardware



Weaknesses of OpenCL 1.0

• OpenCL is a low-level API

– Developers are responsible for a lot of plumbing, 
lots of objects/handles to keep track of

• Developers are responsible for thread-safety

– Some types of multi-accelerator codes are much 
more difficult to write than in the CUDA

• Great need for OpenCL middleware and 
libraries



Data Parallel Model

• Work is submitted to devices by kernels

• Kernels run over global dimension index ranges 
(NDRange), broken up into “work groups” (block), 
and “work items” (thread?)

• Work items executing within the same work 
group can synchronize with each other with 
barriers or memory fences

• Work items in different work groups can’t sync 
with each other, except by launching a new 
kernel



OpenCL NDRange



Hardware abstraction

• OpenCL exposes CPUs, GPUs, and other 
Accelerators as “devices”

• Each “device” contains one or more “compute 
units”, i.e. cores, SMs, etc...

• Each “compute unit” contains one or more 
SIMD “processing elements”



Memory system

• __global–large, high latency

• __private–on-chip device registers

• __local–memory accessible from multiple PEs or 
work items, SRAM or DRAM, must query…

• __constant–read-only constant cache

• Device memory is managed explicitly by the 
programmer, as with CUDA

• Pinned memory buffer allocations are created 
using the CL_MEM_USE_HOST_PTR flag



OpenCL Context

• Contains one or more devices

• OpenCL memory objects are associated with a 
context, not a specific device

• clCreateBuffer() emits error if an allocation is 
too large for any device in the context

• Each device needs its own work queue(s)

• Memory transfers are associated with a 
command queue (thus a specific device)



Multiple devices



CUDA and OpenCL teminology

CUDA terminology OpenCL terminology 

Thread Work-item 

Thread block Work-group 

Global memory Global memory 

Constant memory Constant memory 

Shared memory Local memory 

Local memory Private memory 



ATI RADEON



Hardware 
Overview

• A stream core is 
arranged as a 
five-way very 
long instruction 
word (VLIW) 
processor. 
– Up to five scalar 

operations can 
be issued in a 
VLIW instruction.



ATI Stream Computing of OpenCL



Work group



Wavefront and Work Item



ATI Compute Abstraction Layer (CAL)

• A device driver library that provides a forward-
compatible interface to ATI GPU

– Device-specific code generation

– Interoperability with 3D graphics APIs

– Resource management

– Device management

– Kernel loading and execution

– Multi-device support



Memory structure



Device Scheduling



OpenCL compilation flow



Useful links

• OpenCL Tutorial: 
http://developer.amd.com/gpu/ATIStreamSDK
/pages/TutorialOpenCL.aspx

• ATI Stream Beta 2.0: 
http://developer.amd.com/streambeta

• OpenCL Specification: 
http://www.khronos.org/registry/cl/

http://developer.amd.com/gpu/ATIStreamSDK/pages/TutorialOpenCL.aspx
http://developer.amd.com/gpu/ATIStreamSDK/pages/TutorialOpenCL.aspx
http://developer.amd.com/streambeta
http://www.khronos.org/registry/cl/


HOMEWORK/PROJECT



Homework

• Try OpenCL on nVidea GTX and ATI Radeon

– I purchased a new machine equipped with ATI 
Radeon

• OpenCL Implementations, Tutorials and 
Sample codes

– http://www.khronos.org/developers/resources/o
pencl/#texamples



Project

• Read and implement some papers about GPU
– Designing efficient sorting algorithms for GPUs.

• http://mgarland.org/files/papers/gpusort-ipdps09.pdf

– Warp sort 
• http://www.ipdps.org/ipdps2010/ipdps2010-

slides/session-05/Ye_ipdps10_slide.pdf

– Sample sorting
• http://arxiv.org/abs/0909.5649

– Sparse matrix-vector multiplication 
• http://graphics.cs.uiuc.edu/~wnbell/publications/2009-

08-SC-SpMV/sc09-spmv-throughput.pdf
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