CUDA Programming

Week 3. Cuda Threads

Outline

Thread, warp, and scheduling
Branch divergence
Instruction unrolling
Homework

Thread assignment

* In execution, a block is assigned to an SM

* An SM can have up to 8 blocks, as long as
there are enough resources for all blocks.

— SMs dynamically partition hardware resources to
threads and blocks during the runtime.

— In G80, up to 768 threads per SM.
* Need >=768/8=96 threads to fully utilize both resources

— In G80, up to 512 threads per block.

Warps

In execution, threads are divided into warps.

— All threads in a warp execute the same instruction.

— In G80, each warp has 32-threads.

— Thread 0-31 form the first warp,
32-63 the second warp, and so on.

 Warps are the unit of thread schedulmg in SM

— Context switch is zero-overhead.

————TB1, W1 stall———
—TB2, WA stall—] TB3, W2 stall———|

TB1 B2 TB3 TB3 TB2 TB1 TB1 TB1 B3
_ WH WA WA W2 Wi1 WA W2 W3 W2
Instruction: | 1i2i3i4isie [1i2]|1i2|1i2[83ta]|7is|1i2[1i2[3i4

—Time-» TB = Thread Block, W = Warp

Number of warps

e Suppose 3 blocks are assighed to an SM.

* |f each block has 256 threads, how many
warps in the SM?

)))))))))))))))
(A

rrrrrrrr

— 3 blocks have 8*3 = 24 warps. A

Block 1 War ps Block2 Warps Block1 Warps
.o [.. [P [|
— Each block has 256/32 warps, | [2&&8 || |2ugas || |08

Streaming Multiprocessor

e 24 is the maximal number of
warps in an SM in G80

— Max 768 threads in each SM

Instruc tion Fe tch/ Dispa tch I

Shared Me mory I

SFU SFU

Thread scheduling

* Warps whose next instruction has its operands
ready for consumption are eligible for execution

* 4 clock cycles needed to dispatch the same
instruction for all threads in a Warp in G80

— Why?

* Question: If one global memory access is
needed for every 4 instructions, and each
memory access takes 200 cycles, how many
warps are needed to fully cover the latency

— 13 Warps

SM Instruction Buffer:Warp Scheduling

* Fetch one warp instruction/cycle s
— from instruction L1 cache |
— into any instruction buffer slot
* |[ssue one “ready-to-go” warp T e |l
instruction/cycle from any warp - —
instruction buffer slot Operand Select
— Issue selection based on round- ‘ ’
robin/age of warp M:D "
— Use operand scoreboarding to v

prevent hazards

Scoreboarding

* Determine if a thread is ready to execute

* Old concept from CDC 6600 (1960s) to
separate memory and computation
e Ascoreboard is a table in hardware that tracks

— instructions being fetched, issued, executed

— resources (functional units and operands) needed
by instructions

— which instructions modify which registers

GPU Scoreboarding

* All register operands of all instructions in the
instruction Buffer are scoreboarded

— Instruction becomes ready after the needed values
are deposited

— Prevents hazards
— Cleared instructions are eligible for issue

* Decoupled Memory/Processor pipelines

— Any thread can continue to issue instructions until
scoreboarding prevents issue

— Allows Memory/Processor ops to proceed in shadow
of other waiting Memory/Processor ops

BRANCH DIVERGENCE

Branch divergence

* Threads within a single warp take different
paths
— Different execution paths are serialized in G80

— The control paths taken by the threads in a warp
are traversed one at a time until there is no more.

* Example with divergence: If (threadldx.x > 2) { }

— This creates two control paths for threads in a
block: Threads 0, 1 and 2 follow different path
than the rest of the threads in the first warp

Avoid branch divergence

* Example without divergence:
— If (threadldx.x / BLOCK_SIZE > 2) { }

— Also creates two different control paths for
threads in a block

— Branch granularity is a whole multiple of warp size;
all threads in any given warp follow the same path

 BLOCK_ SIZE = 16, and there are 16*3=48 threads are in
the different paths, but they are in 3 warps.

EX: Parallel Reduction

e Given an array of values, “reduce” them to a
single value in parallel
— Sum reduction: sum of all values in the array
— Max reduction: maximum of all values in the array

* Typically parallel implementation:

— Recursively halve number of threads, reduce two
values per thread

— For n/2 threads, it takes log(n) steps for n
elements

Implementation details

Assume an in-place reduction using shared
memory

The original vector is in global memory

The shared memory used to hold a partial sum
vector

Each iteration brings the partial sum vector
closer to the final sum

The final solution will be in element O

Implementation

 Assume we have already loaded array into
__shared__ float partialSum([]

unsigned int t = threadldx.x;
for (unsigned int stride = 1;
stride < blockDim.x; stride *= 2)
{
__syncthreads();
if (t % (2*stride) == 0)
partialSum[t] += partialSum[t+stride];

Thread O Thread 2 Thread 4 Thread 6 Thread 8 Thread 10

aivea
. .
RS
- .

Array elements —_

Problems

In each iterations, two control flow paths will be
sequentially traversed for each warp.

No more than half of threads will be executing at
any time.

After the 5th iteration, entire warps in each block
will be disabled (no divergence).

This can go on for a while, up to 4 more iterations
(512/32=16= 24), where each iteration only has
one thread activated until all warps retire. .

Review the code

unsigned int t = threadIdx.x;
for (unsigned int stride = 1;

stride<blockDim.x; stride*=2)
{

__syncthreads() ;
if (t $ (2*stride) == 0)
partialSum[t]+=partialSum[t+stride];

BAD: Divergence
due to interleaved
branch decisions

A better implementation

unsigned int t = threadIdx.x;

for (unsigned int stride = blockDim.x;

stride > 1; stride >> 1)
{

__syncthreads() ;
if (t < stride)

partialSum[t] += partialSum|[t+stride];

No Divergence until < 16 sub-sums

Thread O

|

L

UNROLLING

Example

for (int k=0,; k<1lo6; ++k)
Pvalue+=Ms [ty] [k] *Ns [k] [tx];
* There are very few mul/add between
branches and address calculation.
* Loop unrolling
Pvalue+=Ms[ty] [k] *Ns [k] [tx] +..
Ms[ty] [k+15] *Ns[k+15] [tx];
— More adds for address calculation

pragma unroll

* Compiler can help the unrolling using the
#pragma directives
fpragma unroll 5
for (int 1=0;1<n;1++)
* The loop will be unrolled 5 times
— Need be careful for boundary case

e Use #pragma unroll 1 to prevent the compiler
from ever unrolling a loop

HOMEWORK

Homework

e Since we have a break next time, let’s have
more assignments

e 1. Implement summation using two different
parallel ordering, and compare their
performance result

e 2. Continue the matrix-matrix multiplication
— Add tiling (more next slides)
— Add unrolling

Block Granularity Considerations

* How many threads per block should be used?

— For 8X8, we have 64 threads per Block. Since each
SM can take up to 768 threads, there are 12
Blocks. However, each SM can only take up to 8
Blocks, only 512 threads will go into each SM!

— For 16X16, we have 256 threads per Block. Since
each SM can take up to 768 threads, it can take up
to 3 Blocks and achieve full capacity unless other
resource considerations overrule.

— For 32X32, we have 1024 threads per Block. Not
even one can fit into an SM!

 Each SM in G80 has 16KB shared memory

— For TILE_WIDTH = 16, each thread block uses
2*256*4B = 2KB of shared memory.

— Can potentially have up to 8 Thread Blocks
e This allows up to 8*512 = 4,096 pending loads.

— The next TILE_WIDTH 32 would lead to
2*32*32*4B= 8KB shared memory usage per
thread block, allowing only 2 blocks

* Using 16x16 tiling, we reduce the accesses to
the global memory by a factor of 16

— The 86.4B/s bandwidth can now support
(86.4/4)*16 = 347.6 GFLOPS!

