
CUDA Programming

Week 3. Cuda Threads

Outline

• Thread, warp, and scheduling

• Branch divergence

• Instruction unrolling

• Homework

Thread assignment

• In execution, a block is assigned to an SM

• An SM can have up to 8 blocks, as long as
there are enough resources for all blocks.

– SMs dynamically partition hardware resources to
threads and blocks during the runtime.

– In G80, up to 768 threads per SM.

• Need >=768/8=96 threads to fully utilize both resources

– In G80, up to 512 threads per block.

Warps

• In execution, threads are divided into warps.

– All threads in a warp execute the same instruction.

– In G80, each warp has 32-threads.

– Thread 0-31 form the first warp,
32-63 the second warp, and so on.

• Warps are the unit of thread scheduling in SM

– Context switch is zero-overhead.

Number of warps

• Suppose 3 blocks are assigned to an SM.

• If each block has 256 threads, how many
warps in the SM?

– Each block has 256/32 warps.

– 3 blocks have 8*3 = 24 warps.

• 24 is the maximal number of
warps in an SM in G80

– Max 768 threads in each SM

Thread scheduling

• Warps whose next instruction has its operands
ready for consumption are eligible for execution

• 4 clock cycles needed to dispatch the same
instruction for all threads in a Warp in G80
– Why?

• Question: If one global memory access is
needed for every 4 instructions, and each
memory access takes 200 cycles, how many
warps are needed to fully cover the latency
– 13 Warps

SM Instruction Buffer:Warp Scheduling

• Fetch one warp instruction/cycle
– from instruction L1 cache

– into any instruction buffer slot

• Issue one “ready-to-go” warp
instruction/cycle from any warp -
instruction buffer slot
– Issue selection based on round-

robin/age of warp

– Use operand scoreboarding to
prevent hazards

I$
L1

Multithreaded
Instruction Buffer

R
F

C$
L1

Shared
Mem

Operand Select

MAD SFU

Scoreboarding

• Determine if a thread is ready to execute

• Old concept from CDC 6600 (1960s) to
separate memory and computation

• A scoreboard is a table in hardware that tracks

– instructions being fetched, issued, executed

– resources (functional units and operands) needed
by instructions

– which instructions modify which registers

GPU Scoreboarding

• All register operands of all instructions in the
instruction Buffer are scoreboarded
– Instruction becomes ready after the needed values

are deposited

– Prevents hazards

– Cleared instructions are eligible for issue

• Decoupled Memory/Processor pipelines
– Any thread can continue to issue instructions until

scoreboarding prevents issue

– Allows Memory/Processor ops to proceed in shadow
of other waiting Memory/Processor ops

BRANCH DIVERGENCE

Branch divergence

• Threads within a single warp take different
paths

– Different execution paths are serialized in G80

– The control paths taken by the threads in a warp
are traversed one at a time until there is no more.

• Example with divergence: If (threadIdx.x > 2) { }

– This creates two control paths for threads in a
block: Threads 0, 1 and 2 follow different path
than the rest of the threads in the first warp

Avoid branch divergence

• Example without divergence:

– If (threadIdx.x / BLOCK_SIZE > 2) { }

– Also creates two different control paths for
threads in a block

– Branch granularity is a whole multiple of warp size;
all threads in any given warp follow the same path

• BLOCK_SIZE = 16, and there are 16*3=48 threads are in
the different paths, but they are in 3 warps.

EX: Parallel Reduction

• Given an array of values, “reduce” them to a
single value in parallel

– Sum reduction: sum of all values in the array

– Max reduction: maximum of all values in the array

• Typically parallel implementation:

– Recursively halve number of threads, reduce two
values per thread

– For n/2 threads, it takes log(n) steps for n
elements

Implementation details

• Assume an in-place reduction using shared
memory

• The original vector is in global memory

• The shared memory used to hold a partial sum
vector

• Each iteration brings the partial sum vector
closer to the final sum

• The final solution will be in element 0

Implementation

• Assume we have already loaded array into
__shared__ float partialSum[]

unsigned int t = threadIdx.x;
for (unsigned int stride = 1;

stride < blockDim.x; stride *= 2)
{
__syncthreads();
if (t % (2*stride) == 0)

partialSum[t] += partialSum[t+stride];
}

0 1 2 3 4 5 76 1098 11

0+1 2+3 4+5 6+7 10+118+9

0...3 4..7 8..11

0..7 8..15

1

2

3

Array elements

iterations

Thread 0 Thread 8Thread 2 Thread 4 Thread 6 Thread 10

Problems

• In each iterations, two control flow paths will be
sequentially traversed for each warp.

• No more than half of threads will be executing at
any time.

• After the 5th iteration, entire warps in each block
will be disabled (no divergence).

• This can go on for a while, up to 4 more iterations
(512/32=16= 24), where each iteration only has
one thread activated until all warps retire .

Review the code

unsigned int t = threadIdx.x;

for (unsigned int stride = 1;

stride<blockDim.x; stride*=2)

{

__syncthreads();

if (t % (2*stride) == 0)

partialSum[t]+=partialSum[t+stride];

}

BAD: Divergence

due to interleaved

branch decisions

A better implementation

unsigned int t = threadIdx.x;

for (unsigned int stride = blockDim.x;

stride > 1; stride >> 1)

{

__syncthreads();

if (t < stride)

partialSum[t] += partialSum[t+stride];

}

No Divergence until < 16 sub-sums
Thread 0

0 1 2 3 … 13 1514 181716 19

0+16 15+311

3

4

UNROLLING

Example

for(int k=0; k<16; ++k)

Pvalue+=Ms[ty][k]*Ns[k][tx];

• There are very few mul/add between
branches and address calculation.

• Loop unrolling
Pvalue+=Ms[ty][k]*Ns[k][tx]+…

Ms[ty][k+15]*Ns[k+15][tx];

– More adds for address calculation

#pragma unroll

• Compiler can help the unrolling using the
#pragma directives

#pragma unroll 5

for (int i=0;i<n;i++)

• The loop will be unrolled 5 times

– Need be careful for boundary case

• Use #pragma unroll 1 to prevent the compiler
from ever unrolling a loop

HOMEWORK

Homework

• Since we have a break next time, let’s have
more assignments

• 1. Implement summation using two different
parallel ordering, and compare their
performance result

• 2. Continue the matrix-matrix multiplication

– Add tiling (more next slides)

– Add unrolling

Block Granularity Considerations

• How many threads per block should be used?
– For 8X8, we have 64 threads per Block. Since each

SM can take up to 768 threads, there are 12
Blocks. However, each SM can only take up to 8
Blocks, only 512 threads will go into each SM!

– For 16X16, we have 256 threads per Block. Since
each SM can take up to 768 threads, it can take up
to 3 Blocks and achieve full capacity unless other
resource considerations overrule.

– For 32X32, we have 1024 threads per Block. Not
even one can fit into an SM!

• Each SM in G80 has 16KB shared memory

– For TILE_WIDTH = 16, each thread block uses
2*256*4B = 2KB of shared memory.

– Can potentially have up to 8 Thread Blocks

• This allows up to 8*512 = 4,096 pending loads.

– The next TILE_WIDTH 32 would lead to
2*32*32*4B= 8KB shared memory usage per
thread block, allowing only 2 blocks

• Using 16x16 tiling, we reduce the accesses to
the global memory by a factor of 16

– The 86.4B/s bandwidth can now support
(86.4/4)*16 = 347.6 GFLOPS!

