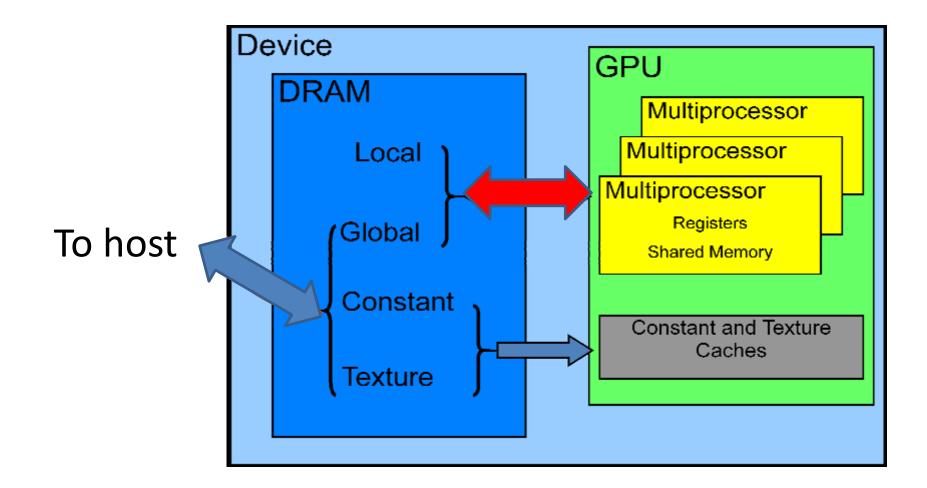
CUDA Programming

Week 2. CUDA Memory

Outline

- Memory review
- Data alignment
- Global memory coalesced
- Memory Padding
- Tiling
- Homework assignment

Device memory



Salient features of device memory

Memory	Location	Cached	Access	Scope	Lifetime
Register	On chip	Ν	R/W	1 thread	Thread
Local	RAM	Ν	R/W	1 thread	Thread
Shared	On chip	Ν	R/W	Threads in a block	Block
Global	RAM	Ν	R/W	All thread + host	Host allocation
Constant	RAM	Y	R	All thread + host	Host allocation
Texture	RAM	Y	R	All thread + host	Host allocation

Size and speed

- Size
 - Global and texture is limited by the size of RAM
 - Local memory: limited 16 KB per thread
 - Shared memory: limited 16KB
 - Constant memory: 64 KB in total
 - 8,192 (or 16,384) 32-bit registers per SM
- Speed:
 - Global, local, texture << constant << shared, register

Host-Device Data Transfers

- Device memory to host memory bandwidth much lower than device memory to device bandwidth
 - 4GB/s peak (PCI) vs. 76 GB/s peak (Tesla C870)
- Method 1: Group transfers
 - One large transfer is much better than many small ones (memory coalescing)
- Method 2: Minimize transfers

Increase computation-communication ratio (tiling)

DATA ALIGNMENT

Data alignment

 Device can read 4-byte, 8-byte, or 16-byte words from global memory into registers in a single instruction.

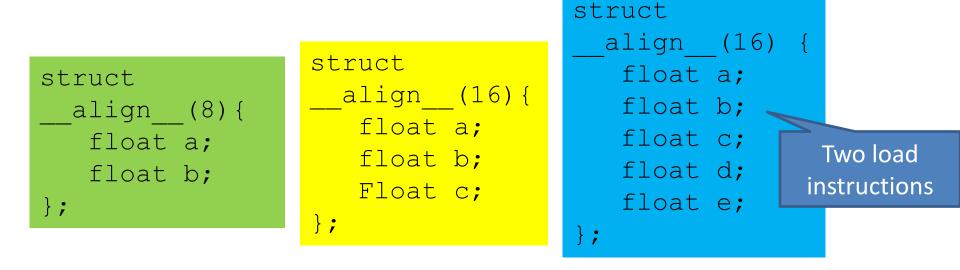
– The following code is in single instruction

__device__ type device[32];
type data = device[tid];

 Reading mis-aligned 8-byte or 16-byte words produces incorrect results

Data alignment

- A data of size 4-byte(8-byte, 16 byte) must aligned to 4-byte(8-byte, 16 byte).
 - Built-in types, like float2 or float4, fulfill this requirement automatically.
 - Structures need ____align__(8) or ___align__(16)



Build-in data type

• The alignment requirement is automatically fulfilled for built-in types, like float2 or float4.

Data type	Size	Alignment
float2	8 byte	8
float3	12 byte	4
float4	16 byte	16

MEMORY COALESCING

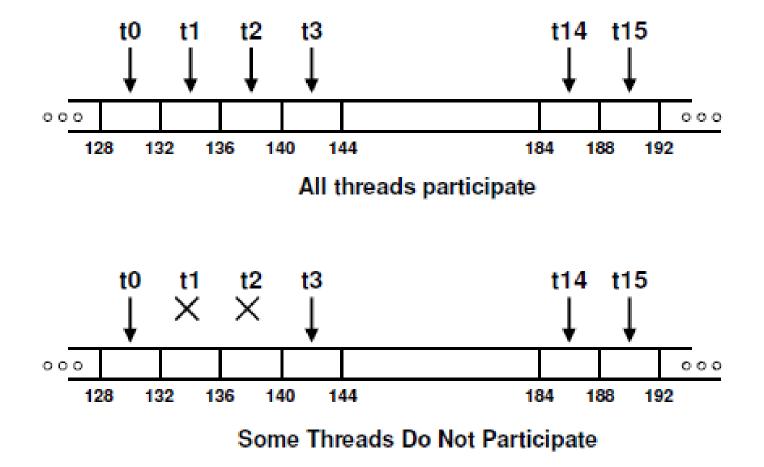
Global memory coalescing

- Global memory bandwidth is used most efficiently when the simultaneous memory accesses by 16 threads
- A contiguous region of global memory:
 - 64 bytes each thread reads a word: int, float, ...
 - 128 bytes each thread reads a double-word: int2, float2, ...
 - 256 bytes each thread reads a quad-word: int4, float4, ...

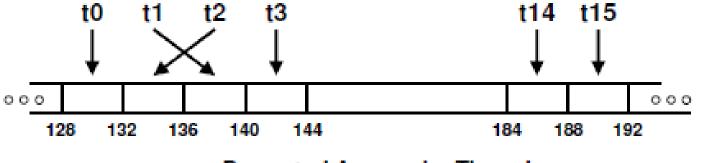
Memory coalescing for cuda 1.1

- The global memory access by 16 threads is coalesced into one or two memory transactions if all 3 conditions are satisfied
 - 1. Threads must access
 - Either 4-byte words: one 64-byte transaction,
 - Or 8-byte words: one 128-byte transaction,
 - Or 16-byte words: two 128-byte transactions;
 - 2. All 16 words must lie in the same segment
 - 3. Threads must access words sequentially.

Coalesced Access (Cuda 1.0-1.1)

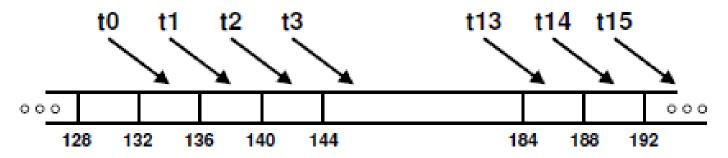


Uncoalesced Access (Cuda 1.0-1.1)



Permuted Access by Threads

non-sequential float memory access, resulting in 16 memory transactions.

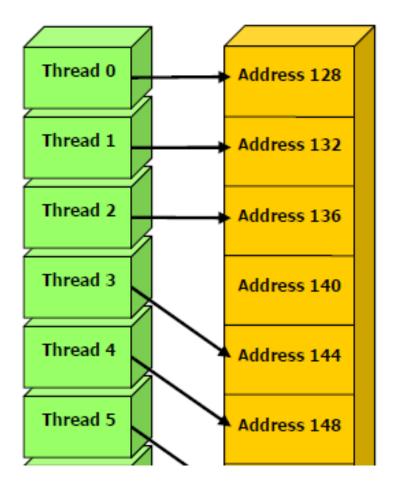


Misaligned Starting Address (not a multiple of 64)

access with a misaligned starting address, resulting in 16 memory transactions.

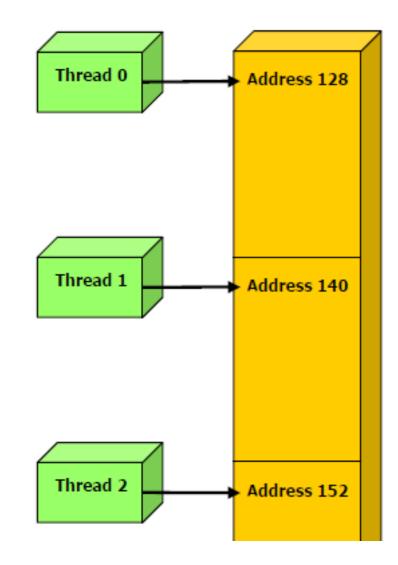
Uncoalesced Access (Cuda 1.0-1.1)

 non-contiguous float memory access, resulting in 16 memory transactions.



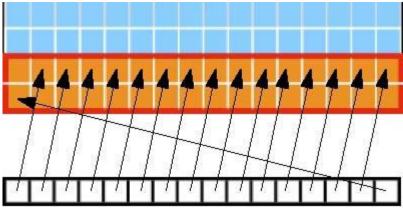
Uncoalesced Access (Cuda 1.0-1.1)

 non-coalesced float3 memory access, resulting in 16 memory transactions.



Things changed

- In cuda 1.2 and later version, the restrictions are relaxed
 - For Cuda 1.1 or lower versions, misaligned access pattern is split into 16 transactions
 - For Cuda 1.2 or higher versions, misaligned access pattern, like the figure, only has in one transactions

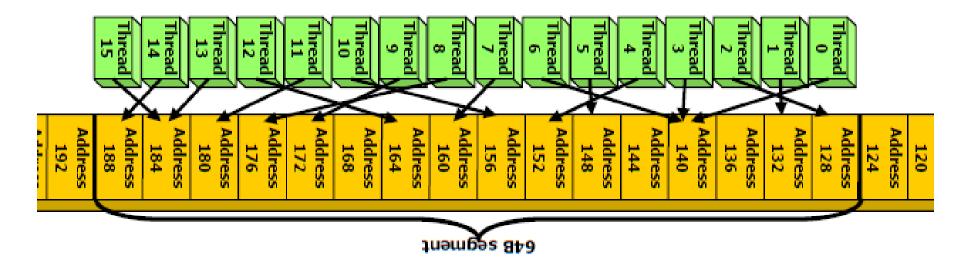


Memory coalescing for cuda 1.2

- The global memory access by 16 threads is coalesced into a single memory transaction as soon as the words accessed by all threads lie in the same segment of size equal to:
 - 32 bytes if all threads access 1-byte words,
 - 64 bytes if all threads access 2-byte words,
 - 128 bytes if all threads access 4-byte or 8-byte words.

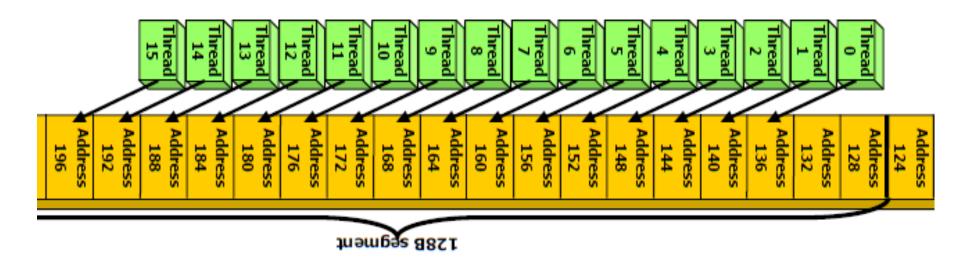
Coalesced Access (Cuda 1.2 later)

• Random float memory access within a 64B segment, resulting in one memory transaction.



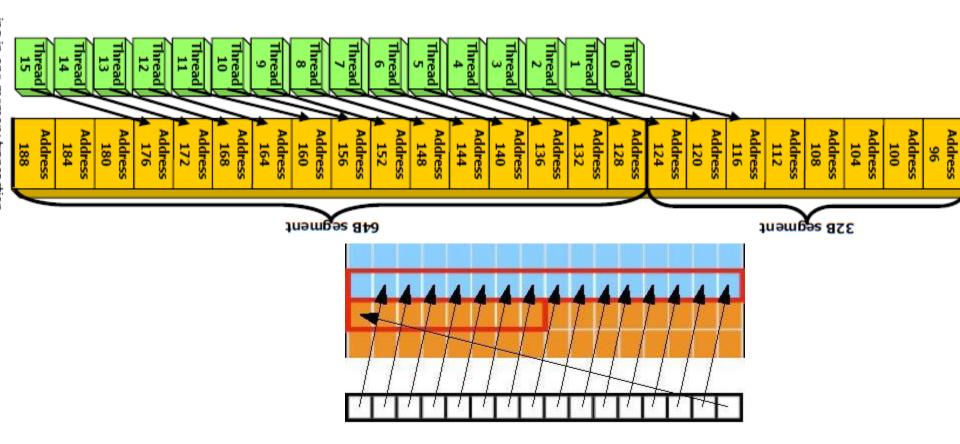
Coalesced Access (Cuda 1.2 later)

misaligned float memory access, resulting in one transaction.



Coalesced Access (Cuda 1.2 later)

 misaligned float memory access, resulting in two transactions.

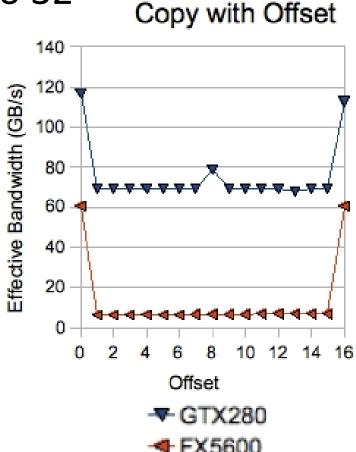


How important it is?

• EX1: Let offset run from 1 to 32

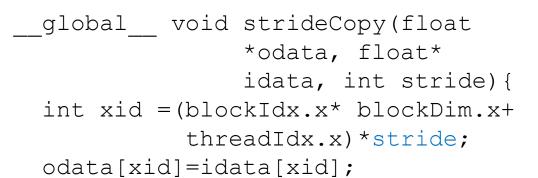
```
blockDim.x+
   threadIdx.x+
   offset;
odata[xid] = idata[xid];
```

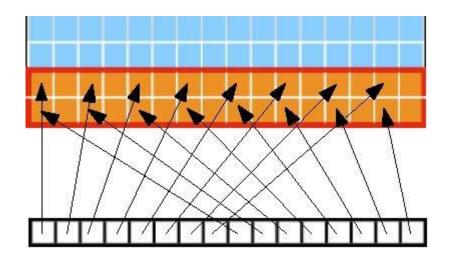
}



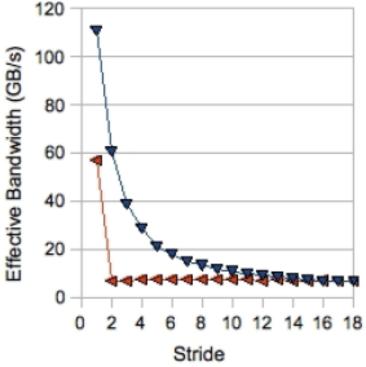
EX2, Strided Accesses

• stride changes from 1 to 18





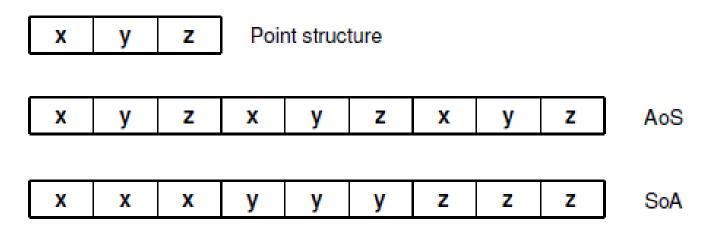
Copy with Stride



- GTX280 - FX5600

Make memory access coalesced

1. Use a Structure of Arrays (SoA) instead of Array of Structures (AoS)



2. Use shared memory to achieve coalescing

Example in the following slices

Example: float3 Code

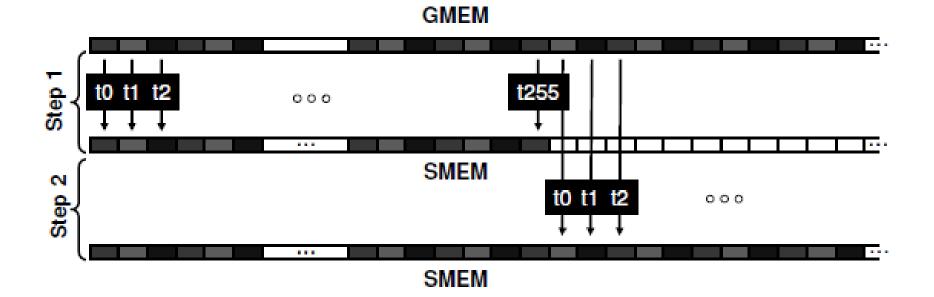
- Read an array of float 3, add 2 to each element
- float3 is of 12 bytes, not 4, 8 or 16.

```
global void accessFloat3(float3 *d in,
float3 d out) {
  int index = blockIdx.x * blockDim.x +
  threadIdx.x;
  float3 a = d in[index];
  a.x += 2;
  a.y += 2;
  a.z += 2;
  d out[index] = a;
}
```

Coalesced Access: float3 Case

- Use shared memory to allow coalescing
 - Need sizeof(float3)*(threads/block) bytes
 - Each thread reads 3 scalar floats:
 - Offsets: 0, (threads/block), 2*(threads/block)
 - These is likely processed by other threads, so sync
- Processing
 - Each thread retrieves its float3 from SMEM array
 - Cast the SMEM pointer to (float3*)
 - Use thread ID as index

```
global void accessInt3Shared(float *g in,float
*q out){
   int index = 3*blockIdx.x*blockDim.x+threadIdx.x;
   shared float s data[256*3];
   s data[threadIdx.x] = g in[index];
   s data[threadIdx.x+256] = g in[index+256];
   s_data[threadIdx.x+512] = g in[index+512];
   syncthreads();
   float3 a = ((float3*)s_data)[threadIdx.x];
   a.x += 2;
   a.y += 2;
   a.z += 2;
   ((float3*)s data)[threadIdx.x] = a;
   syncthreads();
   g out[index] = s data[threadIdx.x];
   g out[index+256] = s data[threadIdx.x+256];
   g out[index+512] = s data[threadIdx.x+512];
}
```



Coalescing: Timing Results

- Experiment:
 - Kernel: read a float, increment, write back
 - 3M floats (12MB), Times averaged over 10K runs
- 12K blocks x 256 threads reading floats:
 - $-356\mu s$ coalesced
 - 3,494µs permuted/misaligned thread access
- 4K blocks x 256 threads reading float3s:
 - 3,302µs float3 uncoalesced
 - $-359\mu s$ float3 coalesced through shared memory

MEMORY PADDING

Common Access Pattern: 2D Array

 Each thread of index (tx,ty) accesses one element of a 2D array located at address
 BaseAddress of type type* and of width N using the following address

BaseAddress + N*ty + tx

How to ensure the memory access is coalesced?
 -blockDim.x = 16x and N=16x

– Recall EX1 (offset) and EX2 (stride)

Memory padding

- We can control blockDim.x, but the array size is not always 16x
- Memory padding: create an array of width=16x, and fill the unused part by 0
- pitch(投擲,音高,間距): the leading dimension of an array A (called Ida)
 - Since C/C++ is row major, the leading dimension is the row-width (number of elements in a row)

CUDA supporting API

 Cuda provides functions to allocate memory and copy data for 2D array

• Similar functions also available for 3D array

TILING

Computation/communication ratio

- Let f be the number of flops, m be number of memory access. Then q = f/m is the computation/communication ratio
- Let t_c be the time per flops, t_m be the time per memory access. The running time is

$$ft_c + mt_m = ft_c \left(1 + \frac{mt_m}{ft_c}\right) = ft_c \left(1 + \frac{1}{q} \frac{t_m}{t_c}\right)$$

 $-t_c$ improves 60% per year, t_m improves 20% per year

Some examples

Vector addition: z = x+y

– f=n, m=3n, q = 1/3

- Matrix-vector multiplication: y=Ax
 f = 2n², m = n²+2n, q = 2
- Matrix-matrix multiplication: C= AB

$$-f = 2n^3$$
, m = $3n^2$, q = $2n/3$

- Therefore, the larger n, the better utilization
- But, can we really achieve that

MMM on CPU

```
void MatrixMulOnHost(float* A, float* B,
float* C, int n) {
    for (int i = 0; i < n; ++i)
        for (int j = 0; j < n; ++j) {
            double sum = 0;
            for (int k = 0; k < n; ++k) {
                double a = A[i * n + k];
                double b = B[k * n + j];
                sum += a * b;
            C[i * n + j] = sum;
        }
```

MMM on GPU

```
global void MatrixMulKernel(float* A, float*
B,float* C,int n) {
    // 2D Thread ID
    int tx = threadIdx.x;
    int ty = threadIdx.y;
    float Cvalue = 0;
                                            В
    for (int k = 0; k < n; ++k) {
         float Aelement = A[ty * n + k];
         float Belement = B[k * n + tx];
         Cvalue += Aelement * Belement;
    }
    // Write to device memory;
                                Α
                                             // each thread writes 1
    // element
    C[ty * n + tx] = Cvalue;
```

The C-C ratio

- One thread computes an element
- A and B are read n times from global memory: 2n³.

A

$$ft_c + mt_m = ft_c \left(1 + \frac{mt_m}{ft_c}\right) = ft_c \left(1 + \frac{1}{q} \frac{t_m}{t_c}\right)$$

• The c-c ratio $q=2n^3/2n^3=1$.



How to improve it?

- Use Shared Memory to reuse global memory data (Hundreds of times faster)
- The bandwidth from host memory to device memory is 8GB/s (PCI expressx2 GEN2)

Higher bandwidth is for pinned memory (later)

- In G80, the bandwidth from device memory to GPU is 86.4GB/s 0.9*384/8*2=86.4
 - 900MHZ memory clock, 384 bit interface, 2 issues (DDR RAM: double data rate)

Basic Idea

- Load A,B into shared memory and have several threads use the local version
 - Shared memory has limited size
 - Suppose the size of shared memory can store 1 column and 1 row of A and B
 - Elements of C can be stored in registers
- Memory read can be parallelized too. (how?)
 Recall the float3 Code

MMM on GPU v2

```
global void MatrixMulKernel(float* A,
                  float* B,float* C,int n) {
  int tx = threadIdx.x;
  int ty = threadIdx.y;
  extern shared float SA[];
  SA[ty*n+k] = A[ty*n+k];
                                           B
  syncthreads();
  float Cvalue = 0;
  for (int k = 0; k < n; ++k) {
     float Bval = B[k*n+tx];
     Cvalue+=SA[ty*n+k]*Bval;
                               A
                                           C
  }
  // Write to device memory;
  C[ty*n+tx] = Cvalue;
```

The C-C ratio

- One block of threads compute a row of C
 - A is read n times from global memory: n^2 .
 - B is read n times from global memory: n^3 .
 - The c-c ratio $q=2n^3/(n^3+n^2) \sim 2$.

$$ft_c + mt_m = ft_c \left(1 + \frac{mt_m}{ft_c}\right) = ft_c \left(1 + \frac{1}{q} \frac{t_m}{t_c}\right)$$

- Another problem: the matrix size is limited by
 - Number of threads per block
 - The size of shared memory

Another try

 If the matrix size is small enough, say 16x16, then A and B can both be loaded into the property shared memory → n² memory access

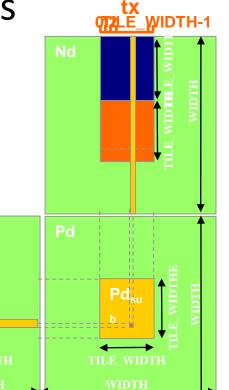
WID.

2

-16x16x4x3 = 3K < 16K

– The c-c ratio is n/2

 Partition A, B, and C into N×N blocks. Each block
 submatrix is of size n/N.¹



Block matrix-matrix multiplication

- Partition A, B, and C into N×N blocks. Each submatrix is of size n/N. Suppose M>3(n/N)².
- Denote A[I, J] the I, J block submatrix of A.

```
for I = 1:N %
  for J = 1:N % read C[I,J] into fast memory
    for K = 1:N % read A[I,K] and B[K,J] into fast memory
        C[I,J]=C[I,J] + A[I,K]*B[K,J]
        end
    end
end
```

The C-C ratio

- Memory access counts.
 - Read B N times: Nn².
 - Read A N time: Nn².
 - Write C 1 time: n^2 .
- Total memory access is (2N +1)n² ~ 2Nn².
- The ratio $q=2n^3/(2Nn^2) = n/N$
- Which N can maximize the performance?

Performance of G80 (8800GTX)

- Peak performance of G80 is 345.6GFLOPS
 - 128 MP; each runs 1.35GHZ;
 - One mult-and-add per cycle for floating point operations (more on this later)
- Need two floating numbers (8 bytes) for one mult-and-add → 4 bytes for one operation

For peak performance, need 4*345.6=1386GB/s

Memory bandwidth of G80 is 86.4GB/s
 – Need c-c ratio 1386/86.4 > 16.04

Homework

- Read chap3 and chap4 from UIUC's class
 http://courses.ece.illinois.edu/ece498/al/Syllabus.html
- Implement matrix-matrix multiplication and using memory padding and tiling
 - See this webpage for reference
 - http://heresy.spaces.live.com/blog/cns!E0070FB8ECF9
 015F!3435.entry
 - Write different versions and compare their performance to learn the effectiveness of each techniques