
CS5321 Numerical Optimization Midterm

April 19, 15:20-17:20

Note: Since all problems are in sets, to avoid your wrong
answers in the previous problems affecting the latter ones,

write down your derivations. Also, if you have any questions
about the problems, write them down.

1. Consider a function f(x1, x2) = x31x2 − 2x21x
2
2 + x1x

3
2.

(a) (5pt) Compute the gradient of f .

∇f(x1, x2) =

(
3x21x2 − 4x1x

2
2 + x32

x31 − 4x21x2 + 3x1x
2
2

)

(b) (5pt) Compute the Hessian of f .

∇2f(x1, x2) =

(
6x1x2 − 4x22 3x21 − 8x1x2 + 3x22

3x21 − 8x1x2 + 3x22 −4x21 + 6x1x2

)

(c) (5pt) Is (x1, x2) = (1, 1) a local minimizer? Justify your answer?

∇f(1, 1) =

(
3− 4 + 1
1− 4 + 3

)
=

(
0
0

)
and

∇2f(1, 1) =

(
6− 4 3− 8 + 3

3− 8 + 3 −4 + 6

)
=

(
2 −2
−2 2

)
has eigenvalue 2, 0, which makes it positive semidefinite, so we
cannot make sure if (1, 1) is a local minimizer.

(d) (5pt) What is the steepest descent direction of f at (x1, x2) =
(1, 2)?
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p⃗ = −∇f(1, 2) = −
(

3 ∗ 2− 4 ∗ 4 + 23

13 − 4 ∗ 2 + 3 ∗ 22

)
=

(
2
−5

)

(e) (5pt) Compute the LDL decomposition of the Hessian of f at
(x1, x2) = (1, 2). (No pivoting)

∇2f(1, 2) =

(
6 ∗ 2− 4 ∗ 4 3− 8 ∗ 2 + 3 ∗ 4

3− 8 ∗ 2 + 3 ∗ 4 −4 + 6 ∗ 2

)
=

(
−4 −1
−1 8

)

L =

(
1 0
.25 1

)
D =

(
−4 0
0 8.25

)

(f) (5pt) What is the Newton’s direction of f at (x1, x2) = (1, 2)?

p⃗ = −(∇2f)−1∇f = −(LT )−1D−1L−1∇f =

(
−1/3
−2/3

)

(g) (5pt) Is the Newton’s direction of f at (x1, x2) = (1, 2) a descent
direction? Justify your answer.

p⃗T∇f = −2 ∗ (−1/3) + 5 ∗ (−2/3) = −8/3 < 0

p⃗ is a descent direction.

(h) (5pt) Modify the LDL decomposition computed in (d) such that
all diagonal elements of D is larger than or equal to 1, and use
the modified LDL decomposition to compute a modified Newton’s
direction at (x1, x2) = (1, 2).

Let

D̂ =

(
1 0
0 8.25

)
.

p⃗ = −(LT )−1D̂−1L−1∇f =

(
13/6
−2/3

)

2. (Line search method) Suppose �(�) = f(x⃗k + �p⃗k) = (�− 1)2.

(a) (10pt) The sufficient decrease condition asks �(�) ≤ �(0)+c1��
′(0).

Suppose c1 = 0.1. What is the feasible interval of � satisfying this
condition? Note that � ∈ [0,∞).
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�′(�) = 2(�− 1), and �′(0) = 2(0− 1) = −2.

The sufficient decrease condition needs

(�− 1)2 ≤ (0− 1)2 + 0.1 ∗ � ∗ (−2) = 1− 0.2�.

Solving the inequality, 0 ≤ � ≤ 1.8.

(b) (10pt) The curvature condition asks �′(�) ≥ c2�
′(0). Suppose

c2 = 0.9. What is the feasible interval of � satisfying this condi-
tion?

�′(�) = 2(�− 1), and �′(0) = 2(0− 1) = −2.

The curvature condition needs

2(�− 1) ≥ 0.9 ∗ (−2) = −1.8.

Solving the inequality, � ≥ 0.1.

3. (Quasi-Newton method) The BSGS update formula for approximating
the inverse of Hessian matrix is

Bk+1 = (I − �ks⃗ky⃗Tk )Bk(I − �ky⃗ks⃗Tk ) + �ks⃗ks⃗
T
k ,

where � = 1/(y⃗Tk sk).

(a) (10pt) Prove that Bk+1 satisfies the secant equation Bk+1y⃗k = s⃗k.

Bk+1y⃗k = (I − �ks⃗ky⃗Tk )Bk(I − �ky⃗ks⃗Tk )y⃗k + �ks⃗ks⃗
T
k y⃗k

= (I − �ks⃗ky⃗Tk )Bk(y⃗k − �ky⃗k�−1k ) + �ks⃗k�
−1
k

= (I − �ks⃗ky⃗Tk )Bk0⃗ + s⃗k = s⃗k

(b) (10pt) Prove that Bk+1 is positive definite if Bk is positive definite
and y⃗TkBk+1y⃗k > 0..

For any vector x⃗ ∈ ℝn,

x⃗TBk+1x⃗ = x⃗T (I − �ks⃗ky⃗Tk )Bk(I − �ky⃗ks⃗Tk )x⃗+ �kx⃗
T s⃗ks⃗

T
k x⃗

Because Bk is positive definite, x⃗T (I − �ks⃗ky⃗Tk )Bk(I − �ky⃗ks⃗Tk )x⃗ >
0. Also x⃗T s⃗ks⃗

T
k x⃗ = (x⃗T s⃗k)2 > 0. By using the result of (a),

y⃗TkBk+1y⃗k = y⃗Tk s⃗k = �k > 0, which implies that x⃗TBk+1x⃗ > 0.
Therefore, Bk+1 is positive definite.
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4. (CG method) Let A =

(
1 0
0 9

)
, x⃗ =

(
1
−1

)
, y⃗ =

(
1
0

)
.

(a) (10pt) What are the restrictions and advantages of using the con-

jugate gradient method to solve Ax⃗ = b⃗?

Restriction: A need be spd.
Advantage: Only need one matrix-vector multiplication per iter-
ation.

(b) (10pt) Find the scalar � that makes two vectors, x⃗ and (x⃗− �y⃗),
A-conjugate.

Want to make x⃗TA(x⃗− �y⃗) = 0.

� =
x⃗TAx⃗

x⃗TAy⃗
= 10.

5. (10pt) In many proofs, we need the function f or its derivative to be
continuous. Give an example to explain why this property is important.
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