CS5321 Numerical Optimization Homework 7

Due June 7

1. (40%)
(a) Suppose G is symmetric positive definite. Prove the dual problem of a quadratic programming,

$$
\begin{array}{ll}
\min _{\vec{x}} & \frac{1}{2} \vec{x}^{T} G \vec{x}+\vec{c}^{T} \vec{x} \\
\text { s.t. } & A \vec{x}-\vec{b} \geq \overrightarrow{0}, \vec{x} \geq 0
\end{array}
$$

is

$$
\begin{array}{ll}
\max _{\vec{\lambda}} & -\frac{1}{2}\left(A^{T} \vec{\lambda}-\vec{c}\right)^{T} G^{-1}\left(A^{T} \vec{\lambda}-\vec{c}\right)+\vec{\lambda}^{T} \vec{b} \\
\text { s.t. } & \vec{\lambda} \geq \overrightarrow{0}
\end{array}
$$

(b) Convert the following quadratic program to the dual problem

$$
\begin{array}{cl}
\min _{x_{1}, x_{2}} & q\left(x_{1}, x_{2}\right)=\left(x_{1}-1\right)^{2}+\left(x_{2}-2.5\right)^{2} \\
\text { s.t. } & x_{1}-2 x_{2}+2 \geq 0 \\
& -x_{1}-2 x_{2}+6 \geq 0 \\
& -x_{1}+2 x_{2}+2 \geq 0 \\
& x_{1} \geq 0 \\
& x_{2} \geq 0
\end{array}
$$

(c) Solve the primal and the dual problem in (b) by Matlab's function quadprog with $\vec{x}_{0}=(2,0)^{T}$, and compare their results.
2. (60%) Consider the following constrained minimization problem

$$
\begin{aligned}
\underset{\vec{x}}{\min } & e^{x_{1} x_{2} x_{3} x_{4} x_{5}}-\frac{1}{2}\left(x_{1}^{3}+x_{2}^{3}+1\right)^{2} \\
\text { s.t. } & x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}+x_{5}^{2}-10=0 \\
& x_{2} x_{3}-5 x_{4} x_{5}=0 \\
& x_{1}^{3}+x_{2}^{3}+1=0
\end{aligned}
$$

which has a solution $\vec{x}^{*}=(-1.8,1.7,1.9,-0.8,-0.8)^{T}$. Implement the SQP method, as sketched in Figure 1, in Matlab to solve the problem with $\vec{x}_{0}=(-1.71,1.59,1.82,-0.763,-0.763)^{T}$.
(a) Write the Lagrangian function of the problem.
(b) Write the gradient and the Hessian of the Lagrangian function.
(c) Write the Jacobian of the constraints.
(d) At a solution $\left(x_{k}, \lambda_{k}\right)$, express the problem by a quadratic program.
(e) Print out \vec{x}_{k} of your program.

For the problem

$$
\begin{array}{ll}
\min _{\vec{x}} & f(\vec{x}) \\
\text { s.t. } & c(\vec{x})=\left(\begin{array}{c}
c_{1}(\vec{x}) \\
c_{2}(\vec{x}) \\
\vdots \\
c_{m}(\vec{x})
\end{array}\right)=\overrightarrow{0}
\end{array}
$$

1. Choose an initial pair $\left(\vec{x}_{0}, \vec{\lambda}_{0}\right)$.
2. For $k=0,1, \ldots$ until converge
(a) Evaluate $\nabla f\left(\vec{x}_{k}\right), \nabla_{x x}^{2} \mathcal{L}\left(\vec{x}_{k}, \vec{\lambda}_{k}\right), c\left(\vec{x}_{k}\right)$ and $A_{k}=\nabla c\left(\vec{x}_{k}\right)$.
(b) Solve the local quadratic program

$$
\begin{array}{cl}
\min _{\vec{p}} & \frac{1}{2} \vec{p}^{T} \nabla_{x x}^{2} \mathcal{L}_{k} \vec{p}+\nabla f_{k}^{T} \vec{p} \\
\text { s.t. } & A_{k} \vec{p}+c\left(\vec{x}_{k}\right)=0
\end{array}
$$

to obtain \vec{p}_{k} and $\vec{\ell}_{k}$.
(c) Set $\vec{x}_{k+1}=\vec{x}_{k}+\vec{p}_{k}$ and $\vec{\lambda}_{k}=\vec{\ell}_{k}$.

Figure 1: Local Sequential Quadratic Programming (SQP) method

