(CS5321 Numerical Optimization Homework 6

Due May 24

1. (20%) (Farkas’s Lemma) Let A be an m x n matrix and b an m vector.
Prove that exact one of the following two statements is true:

(a) There exists a @ € R” such that A7 = b and 7 > 0.
(b) There exists a @ € R™ such that A”@ > 0 and "7 < 0.

(Hint: prove if (a) is true, then (b) cannot be true, and vice versa.)

Suppose (a) is true. If (b) is also true, then @ A% = @7b. Since 7@ > 0
and AT% > 0, w"b = b'@ > 0, which contradicts with the statement in
(b).

Suppose (b) is true. If (a) is true,
ol =" AT < 0.

However, because 7 > 0 and A”% > 0, their product cannot be nega-
tive.

Those two cases have their geometric interpretations. For (a), Av for
7> 0 forms a cone. AT =15 just means b is a vector in the cone. For
(b), AT@ > 0 means the angles of @ and the column vectors of A are
less than 90 degree; and the angle of @ and bis larger than 90 degree.
If @ is a normal vector of a hyperplane P, then P separates b from the
column vectors of A.

Farkas lemma just says either b is inside the cone A7 or outside the
cone. One of them must be true, but cannot be both.



Farkas’s Lemma (1902) plays an important role in the proof of the
KKT condition. The most critical part in the proof of the KKT con-
dition is to show that the Lagrange multiplier X* > 0 for inequality
constraints. We can say if the LICQ condition is satisfied at *, then
any feasible direction ¢ at z* must have the following properties:

o IV f(Z*) > 0, since Z* is a local minimizer. (Otherwise, we
find a feasible descent direction that decreases f.)

o Ve, () = 0 for equality constraints, ¢; = 0.
o y'Ve;(2*) > 0 for inequality constraints, ¢; > 0.

Here is how Farkas Lemma enters the theme. Let b be V f (2*), U be
¥ (any feasible direction at z*), the columns of A be V¢;(Z*). Since
no such « exists, according to the properties of ¢/, statement (a) must

hold. The vector 7 in (a) corresponds to A*, which just gives us the
desired result of the KK'T condition.

2. (50%) Consider the following constrained minimization problem

(1—21) — 2y >

0
T 2 . =
min —x; + x5 subject to { oyt — 1 > 0

Z1,T2

(a) Plot the feasible region of the problem, and use it to find the
optimal solution z*.

7 = (0,1)7.
(b) Write its Lagrangian function £(Z, X), and use KKT condition to
compute \*.

ﬁ(f, X) = - + ZE% — )\1((1 — IEl)g — IL‘Q) - A2($1 —+ x9 — 1)

At the optimal solution, V,£(&*, X) =0.

-1+ 3)\1(1 - I1)2 — /\2 )

Vxﬁ(l', )\> - ( 25132 + /\1 — )\2

To make V,£((0,1)7,X) = 0,
- \\ —1 + 3)\1 - )\2 o 0
ce = ()= (0)
The solution is A\j = 3/2,\5 = 7/2.
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(c) Verify the LICQ condition at Z*.
Let ¢1(Z) = (1 — x1)® — 29 and (7)) = 71 + 29 — 1.

Veu(7) = ( 8 )’ ) Vo) = ( | )

Let A = [Vey () Veo (7)) = ( :i’ ' )

Since det(A) = —2 # 0, Ve (@%) and Veo(2*) are linearly inde-
pendent. The LICQ holds.
(d) Verify the KKT condition at ™.

e The first condition £(7*, X*) holds if we choose X\* = (3/2,7/2).
e There is no equality constraints.

e The inequality constraints, c;(7*) = (1 —0)> =1 = 0 and
(@) =0+ 1—1=0 are also satisfied.

A =3/2>0and \j =7/2 > 0.

The complementarity condition, Ajc;(7*) = 3/2% 0 = 0, and
Nseo (%) = 7/2 %0 = 0 are also true.

(e) Compute the Lagrangian Hessian at #* and the critical cone, and
verify the second order optimality condition.

( —6)\1((1)—x1) g )

) at 7 = (0,1) and X* = (3/2,7/2)7.

The Lagrangian Hessian is

Vo L£(Z, X)

-9 0
0 2
Since both constraints are active, the critical cone is

which equals to (

{0 Ve (7%) = 0 and W Vey(Z7) = 0}.
The only vector in the cone is w = (0,0)7.
BTV 4o L(T, X = 0.
3. (30%) Consider the following problem

1 1
min oz} + =23 + 71 subject to z; > 1.
z1,x2 2 2
Determine the solution to this problem for a = 1 and a = 0. For each
case, formulate the dual, and determine whether the primal and the

dual have the same optimal solution.
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Case 1

1
min z; = —33% + x1 subject to xy > 1.
o1, 2

The optimal solution is 1 at (1,0). The Lagrangian is

1 1
Ez§m§+x1—/\(a71—1):§x§+(1—/\)x1+/\.

The objective function of the dual problem is obtained by

min £(\) =

1,72

—o0, if A>1;
A, it A < 1.

The dual problem becomes

mfmx)\ subject to 0 < XA <1,

whose solution is 1.

Case 11
. 1, 1, .
min zo = §x1 + §x2 + x1 subject to 1 > 1.
ZT1,T2

The optimal solution is 3/2 at (1,0). The Lagrangian is

1 1

The objective function of the dual problem is obtained by

1
min L(\) = 5:5% + (1= N + A

Z1,T2
1 1
= §($1+(1—/\))2—§(1—>\)2+)\
1 1
= —ZA422-2
2 + 2

The dual problem is
1., 1 .
max —=A" + 2\ — —. subject to A > 0,
A 2 2

whose optimal solution is at A = 2 and optimal objective function
value is 3/2, equal to the primal’s.



