
CS5321 Numerical Optimization Homework 6

Due May 24

1. (20%) (Farkas’s Lemma) Let A be an m×n matrix and ~b an m vector.
Prove that exact one of the following two statements is true:

(a) There exists a ~v ∈ Rn such that A~v = ~b and ~v ≥ 0.

(b) There exists a ~u ∈ Rm such that AT~u ≥ 0 and ~bT~u < 0.

(Hint: prove if (a) is true, then (b) cannot be true, and vice versa.)

Suppose (a) is true. If (b) is also true, then ~uTA~v = ~uT~b. Since ~v ≥ 0

and AT~u ≥ 0, ~uT~b = ~bT~u ≥ 0, which contradicts with the statement in
(b).

Suppose (b) is true. If (a) is true,

~bT~u = ~vTAT~u < 0.

However, because ~v ≥ 0 and AT~u ≥ 0, their product cannot be nega-
tive.

Those two cases have their geometric interpretations. For (a), A~v for

~v ≥ 0 forms a cone. A~v = ~b just means ~b is a vector in the cone. For
(b), AT~u ≥ 0 means the angles of ~u and the column vectors of A are

less than 90 degree; and the angle of ~u and ~b is larger than 90 degree.
If ~u is a normal vector of a hyperplane P , then P separates ~b from the
column vectors of A.

Farkas lemma just says either ~b is inside the cone A~v or outside the
cone. One of them must be true, but cannot be both.
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Farkas’s Lemma (1902) plays an important role in the proof of the
KKT condition. The most critical part in the proof of the KKT con-
dition is to show that the Lagrange multiplier ~λ∗ ≥ 0 for inequality
constraints. We can say if the LICQ condition is satisfied at ~x∗, then
any feasible direction ~y at ~x∗ must have the following properties:

• ~yT∇f(~x∗) ≥ 0, since ~x∗ is a local minimizer. (Otherwise, we
find a feasible descent direction that decreases f .)

• ~yT∇ci(~x∗) = 0 for equality constraints, ci = 0.

• ~yT∇ci(~x∗) ≥ 0 for inequality constraints, ci ≥ 0.

Here is how Farkas Lemma enters the theme. Let ~b be ∇f(~x∗), ~u be
~y (any feasible direction at ~x∗), the columns of A be ∇ci(~x∗). Since
no such ~u exists, according to the properties of ~y, statement (a) must

hold. The vector ~v in (a) corresponds to ~λ∗, which just gives us the
desired result of the KKT condition.

2. (50%) Consider the following constrained minimization problem

min
x1,x2
−x1 + x22 subject to

{
(1− x1)3 − x2 ≥ 0
x1 + x2 − 1 ≥ 0

(a) Plot the feasible region of the problem, and use it to find the
optimal solution ~x∗.

~x∗ = (0, 1)T .

(b) Write its Lagrangian function L(~x,~λ), and use KKT condition to

compute ~λ∗.

L(~x,~λ) = −x1 + x22 − λ1((1− x1)3 − x2)− λ2(x1 + x2 − 1).

At the optimal solution, ∇xL(~x∗, ~λ) = 0.

∇xL(~x,~λ) =

(
−1 + 3λ1(1− x1)2 − λ2

2x2 + λ1 − λ2

)
.

To make ∇xL((0, 1)T , ~λ) = 0,

∇xL(~x,~λ) =

(
−1 + 3λ1 − λ2

2 + λ1 − λ2

)
=

(
0
0

)
.

The solution is λ∗1 = 3/2, λ∗2 = 7/2.
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(c) Verify the LICQ condition at ~x∗.

Let c1(~x) = (1− x1)3 − x2 and c2(~x) = x1 + x2 − 1.

∇c1(~x) =

(
−3(1− x1)2
−1

)
,∇c2(~x) =

(
1
1

)

Let A = [∇c1(~x∗) ∇c2(~x∗)] =

(
−3 1
−1 1

)
.

Since det(A) = −2 6= 0, ∇c1(~x∗) and ∇c2(~x∗) are linearly inde-
pendent. The LICQ holds.

(d) Verify the KKT condition at ~x∗.

• The first condition L(~x∗, ~λ∗) holds if we choose ~λ∗ = (3/2, 7/2).

• There is no equality constraints.

• The inequality constraints, c1(~x
∗) = (1 − 0)3 − 1 = 0 and

c2(~x
∗) = 0 + 1− 1 = 0 are also satisfied.

• λ∗1 = 3/2 > 0 and λ∗2 = 7/2 > 0.

• The complementarity condition, λ∗1c1(~x
∗) = 3/2 ∗ 0 = 0, and

λ∗2c2(~x
∗) = 7/2 ∗ 0 = 0 are also true.

(e) Compute the Lagrangian Hessian at ~x∗ and the critical cone, and
verify the second order optimality condition.

The Lagrangian Hessian is

∇xxL(~x,~λ) =

(
−6λ1(1− x1) 0

0 2

)
.

which equals to

(
−9 0
0 2

)
at ~x∗ = (0, 1) and ~λ∗ = (3/2, 7/2)T .

Since both constraints are active, the critical cone is

{~w|~wT∇c1(~x∗) = 0 and ~wT∇c2(~x∗) = 0}.

The only vector in the cone is ~w = (0, 0)T .

~wT∇xxL(~x,~λ)~w = 0.

3. (30%) Consider the following problem

min
x1,x2

1

2
αx21 +

1

2
x22 + x1 subject to x1 ≥ 1.

Determine the solution to this problem for α = 1 and α = 0. For each
case, formulate the dual, and determine whether the primal and the
dual have the same optimal solution.
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Case I

min
x1,x2

z1 =
1

2
x22 + x1 subject to x1 ≥ 1.

The optimal solution is 1 at (1, 0). The Lagrangian is

L =
1

2
x22 + x1 − λ(x1 − 1) =

1

2
x22 + (1− λ)x1 + λ.

The objective function of the dual problem is obtained by

min
x1,x2
L(λ) =

{
−∞, if λ > 1;
λ, if λ ≤ 1.

The dual problem becomes

max
λ

λ subject to 0 ≤ λ ≤ 1,

whose solution is 1.

Case II

min
x1,x2

z2 =
1

2
x21 +

1

2
x22 + x1 subject to x1 ≥ 1.

The optimal solution is 3/2 at (1, 0). The Lagrangian is

L =
1

2
x21 +

1

2
x22 + x1 − λ(x1 − 1).

The objective function of the dual problem is obtained by

min
x1,x2
L(λ) =

1

2
x21 + (1− λ)x1 + λ

=
1

2
(x1 + (1− λ))2 − 1

2
(1− λ)2 + λ

= −1

2
λ2 + 2λ− 1

2

The dual problem is

max
λ
−1

2
λ2 + 2λ− 1

2
. subject to λ ≥ 0,

whose optimal solution is at λ = 2 and optimal objective function
value is 3/2, equal to the primal’s.
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