CS5321 Numerical Optimization Homework 4

Due April 26

1. (30%) The conjugate gradient method for solving $A x=b$ is given in Figure 1, where z_{k} is the approximate solution. In class, we only showed that $\alpha_{k}=\left(\vec{p}_{k}^{T} \vec{r}_{k}\right) /\left(\vec{p}_{k}^{T} A \vec{p}_{k}\right)$ and $\beta_{k}=-\left(\vec{p}_{k}^{T} A \vec{r}_{k+1}\right) /\left(\vec{p}_{k}^{T} A \vec{p}_{k}\right)$. Prove that the above formulas of α_{k} and β_{k} are equivalent to the ones in step (3) and step (6). Your may need the relations in step (4) and step (5), and the following facts.
(a) \vec{r}_{i} and \vec{r}_{j} are orthogonal to each other. (If $i \neq j, \vec{r}_{i}^{T} \vec{r}_{j}=0$.)
(b) \vec{p}_{i} and \vec{p}_{j} are A-conjugate to each other. (If $i \neq j, \vec{p}_{i}^{T} A \vec{p}_{j}=0$.)
(c) \vec{p}_{k} is a linear combination of $\vec{r}_{0}, \ldots, \vec{r}_{k}, \vec{p}_{k}=\sum_{i=1}^{k} \gamma_{i} \vec{r}_{i}$. (which can be shown from step (7) by induction.)
(1) Given \vec{z}_{0}. Let $\vec{p}_{0}=\vec{b}-A \vec{z}_{0}$, and $\vec{r}_{0}=\vec{p}_{0}$.
(2) For $k=0,1,2, \ldots$ until $\left\|\vec{r}_{k}\right\| \leq \epsilon$
(3) $\quad \alpha_{k}=\left(\vec{r}_{k}^{T} \vec{r}_{k}\right) /\left(\vec{p}_{k}^{T} A \vec{p}_{k}\right)$
(4) $\quad \vec{z}_{k+1}=\vec{z}_{k}+\alpha_{k} \vec{p}_{k}$
(5) $\quad \vec{r}_{k+1}=\vec{r}_{k}-\alpha_{k} A \vec{p}_{k}$
(6) $\quad \beta_{k}=\left(\vec{r}_{k+1}^{T} \vec{r}_{k+1}\right) /\left(\vec{r}_{k}^{T} \vec{r}_{k}\right)$
(7) $\quad \vec{p}_{k+1}=\vec{r}_{k+1}+\beta_{k} \vec{p}_{k}$

Figure 1: The CG algorithm

First, we show that

$$
\begin{equation*}
\alpha_{k}=\frac{\vec{p}_{k}^{T} \vec{r}_{k}}{\vec{p}_{k}^{T} A \vec{p}_{k}}=\frac{\vec{r}_{k}^{T} \vec{r}_{k}}{\vec{p}_{k}^{T} A \vec{p}_{k}} \tag{1}
\end{equation*}
$$

The only thing to prove is $\vec{p}_{k}^{T} \vec{r}_{k}=\vec{r}_{k}^{T} \vec{r}_{k}$. By using (c),

$$
\vec{p}_{k}^{T} \vec{r}_{k}=\sum_{i=1}^{k} \gamma_{i} \vec{r}_{i}^{T} \vec{r}_{k}
$$

With (a), $\vec{r}_{i} \vec{r}_{k}=0$ except $i=k$. Thus, $\vec{p}_{k}^{T} \vec{r}_{k}=\vec{r}_{k}^{T} \vec{r}_{k}$.
Second, we prove $\beta_{k}=-\frac{\vec{p}_{k}^{T} A \vec{r}_{k+1}}{\vec{p}_{k}^{T} A \vec{p}_{k}}$. We can use the result in the first step to simplify the proof.

$$
\beta_{k}=-\frac{\vec{p}_{k}^{T} A \vec{r}_{k+1}}{\vec{p}_{k}^{T} A \vec{p}_{k}}=-\frac{\vec{r}_{k}^{T} \vec{r}_{k}}{\vec{p}_{k}^{T} A \vec{p}_{k}} \frac{\vec{p}_{k}^{T} A \vec{r}_{k+1}}{\vec{r}_{k}^{T} \vec{r}_{k}}=-\alpha_{k} \frac{\vec{p}_{k}^{T} A \vec{r}_{k+1}}{\vec{r}_{k}^{T} \vec{r}_{k}} .
$$

Thus, we only need to show that $-\alpha_{k} \vec{p}_{k}^{T} A \vec{r}_{k+1}=\vec{r}_{k+1}^{T} \vec{r}_{k+1}$.
From step (5), $\vec{r}_{k+1}=\vec{r}_{k}-\alpha_{k} A \vec{p}_{k}$.

$$
\vec{r}_{k+1}^{T} \vec{r}_{k+1}=\left(\vec{r}_{k}-\alpha_{k} A \vec{p}_{k}\right)^{T} \vec{r}_{k+1}=\vec{r}_{k}^{T} \vec{r}_{k+1}-\alpha_{k} \vec{p}_{k}^{T} A \vec{r}_{k+1}
$$

However, property (a) tells $\vec{r}_{k}^{T} \vec{r}_{k+1}=0$.
Therefore, $-\alpha_{k} \vec{p}_{k}^{T} A \vec{r}_{k+1}=\vec{r}_{k+1}^{T} \vec{r}_{k+1}$.
2. (70%) Find the minimum of the Rosenbrock function

$$
f(x, y)=(1-x)^{2}+100\left(y-x^{2}\right)^{2} .
$$

(a) Implement the quasi-Newton method (BFGS) with line search, and test it with $\left(x_{0}, y_{0}\right)=(-1.2,1.0)$ and initial Hessian $H_{0}=I$. Let B_{k} be the BFGS approximation to the inverse of the Hessian H_{k} matrix. The formula of updating B_{k} is

$$
B_{k+1}=\left(I-\rho_{k} \vec{s}_{k} \vec{y}_{k}^{T}\right) B_{k}\left(I-\rho_{k} \vec{y}_{k} \vec{s}_{k}^{T}\right)+\rho_{k} \vec{s}_{k} \vec{s}_{k}^{T}
$$

where $\vec{s}_{k}=x_{k+1}-x_{k}, \vec{y}_{k}=\nabla f_{k+1}-\nabla f_{k}$, and $\rho_{k}=1 / \vec{y}_{k}^{T} s_{k}$.
(b) Figure 2 shows the truncated Newton's method (TN) with line search. The inner-loop of TN, Line (5)-(14), is just like CG. Compare Line (4)-(14) with CG in Figure 1 and point out their differences.
(c) Implement the truncated Newton's method (TN) with line search, and test it with $\left(x_{0}, y_{0}\right)=(-1.2,1.0)$.
(1) Given an initial point \vec{x}_{0}.
(2) For $k=0,1,2, \ldots$
(3) Compute $H_{k}, \nabla f_{k}$ and set $\epsilon_{k}=\min \left(0.5, \sqrt{\left\|\nabla f_{k}\right\|}\right) \times\left\|\nabla f_{k}\right\|$

Given \vec{z}_{0}. Let $\vec{d}_{0}=-\nabla f_{k}-A \vec{z}_{0}=-\nabla f_{k}$, and $\vec{r}_{0}=\vec{p}_{0}$.
For $j=0,1,2, \ldots$
If $\left(\overrightarrow{d_{j}^{T}} H_{k} \vec{d}_{j} \leq 0\right)$
$\vec{p}_{k}=\vec{z}_{j} ;\left(\right.$ if $\left.j=0, \vec{p}_{k}=-\nabla f_{k}.\right)$ break;
$\alpha_{j}=\left(\vec{r}_{j}^{T} \vec{r}_{j}\right) /\left(\vec{d}_{j}^{T} H_{k} \vec{d}_{j}\right)$
$\vec{z}_{j+1}=\vec{z}_{j}+\alpha_{j} \vec{d}_{j}$ $\vec{r}_{j+1}=\vec{r}_{j}-\alpha_{k} H_{k} \vec{d}_{j}$ If $\left(\left\|\vec{r}_{j+1}\right\| \leq \epsilon_{k}\right)$
$\vec{p}_{k}=\vec{z}_{j+1} ;$ break;
$\beta_{j}=\left(\vec{r}_{j+1}^{T} \vec{r}_{j+1}\right) /\left(\vec{r}_{j}^{T} \vec{r}_{j}\right)$ $\vec{d}_{j+1}=\vec{r}_{j+1}+\beta_{j} \vec{d}_{j}$
End for
(15) Use line search to find a_{k} and set $\vec{x}_{k+1}=\vec{x}_{k}+a_{k} \vec{p}_{k}$ End for

Figure 2: The truncated Newton algorithm

