CS5321 Numerical Optimization Homework 4

Due April 26

- 1. (30%) The conjugate gradient method for solving Ax = b is given in Figure 1, where z_k is the approximate solution. In class, we only showed that $\alpha_k = (\vec{p}_k^T \vec{r}_k)/(\vec{p}_k^T A \vec{p}_k)$ and $\beta_k = -(\vec{p}_k^T A \vec{r}_{k+1})/(\vec{p}_k^T A \vec{p}_k)$. Prove that the above formulas of α_k and β_k are equivalent to the ones in step (3) and step (6). Your may need the relations in step (4) and step (5), and the following facts.
 - (a) \vec{r}_i and \vec{r}_j are orthogonal to each other. (If $i \neq j$, $\vec{r}_i^T \vec{r}_j = 0$.)
 - (b) \vec{p}_i and \vec{p}_j are A-conjugate to each other. (If $i \neq j$, $\vec{p}_i^T A \vec{p}_j = 0$.)
 - (c) \vec{p}_k is a linear combination of $\vec{r}_0, \ldots, \vec{r}_k, \vec{p}_k = \sum_{i=1}^k \gamma_i \vec{r}_i$. (which can be shown from step (7) by induction.)
 - (1) Given \vec{z}_0 . Let $\vec{p}_0 = \vec{b} A\vec{z}_0$, and $\vec{r}_0 = \vec{p}_0$.
 - (2) For $k = 0, 1, 2, \dots$ until $\|\vec{r}_k\| \le \epsilon$
 - (3) $\alpha_k = (\vec{r}_k^T \vec{r}_k) / (\vec{p}_k^T A \vec{p}_k)$
 - (4) $\vec{z}_{k+1} = \vec{z}_k + \alpha_k \vec{p}_k$
 - (5) $\vec{r}_{k+1} = \vec{r}_k \alpha_k A \vec{p}_k$
 - (6) $\beta_k = (\vec{r}_{k+1}^T \vec{r}_{k+1}) / (\vec{r}_k^T \vec{r}_k)$
 - (7) $\vec{p}_{k+1} = \vec{r}_{k+1} + \beta_k \vec{p}_k$

Figure 1: The CG algorithm

2. (70%) Find the minimum of the Rosenbrock function

$$f(x,y) = (1-x)^2 + 100(y-x^2)^2$$

(a) Implement the quasi-Newton method (BFGS) with line search, and test it with $(x_0, y_0) = (-1.2, 1.0)$ and initial Hessian $H_0 = I$.

Let B_k be the BFGS approximation to the inverse of the Hessian H_k matrix. The formula of updating B_k is

$$B_{k+1} = (I - \rho_k \vec{s}_k \vec{y}_k^T) B_k (I - \rho_k \vec{y}_k \vec{s}_k^T) + \rho_k \vec{s}_k \vec{s}_k^T,$$

where $\vec{s}_k = x_{k+1} - x_k$, $\vec{y}_k = \nabla f_{k+1} - \nabla f_k$, and $\rho_k = 1/\vec{y}_k^T s_k$.

- (b) Figure 2 shows the truncated Newton's method (TN) with line search. The *inner-loop* of TN, Line (5)-(14), is just like CG. Compare Line (4)-(14) with CG in Figure 1 and point out their differences.
- (c) Implement the truncated Newton's method (TN) with line search, and test it with $(x_0, y_0) = (-1.2, 1.0)$.
- (1) Given an initial point \vec{x}_0 .
- (2) For k = 0, 1, 2, ...

(7)

- (3) Compute $H_k, \nabla f_k$ and set $\epsilon_k = \min(0.5, \sqrt{\|\nabla f_k\|}) \times \|\nabla f_k\|$
- (4) Let $\vec{z_0} = 0$. Let $\vec{d_0} = -\nabla f_k A\vec{z_0} = -\nabla f_k$, and $\vec{r_0} = \vec{d_0}$.
- (5) For $j = 0, 1, 2, \dots$
- (6) If $(\vec{d}_i^T H_k \vec{d}_i \le 0)$

$$\vec{p}_k = \vec{z}_j$$
; (if $j = 0, \ \vec{p}_k = -\nabla f_k$.) break;

- (8) $\alpha_j = (\vec{r}_j^T \vec{r}_j) / (\vec{d}_j^T H_k \vec{d}_j)$
- (9) $\vec{z}_{j+1} = \vec{z}_j + \alpha_j \vec{d}_j$
- (10) $\vec{r}_{j+1} = \vec{r}_j \alpha_j H_k \vec{d}_j$
- (11) If $(\|\vec{r}_{j+1}\| \le \epsilon_k)$
- (12) $\vec{p}_k = \vec{z}_{j+1};$ break;
- (13) $\beta_j = (\vec{r}_{j+1}^T \vec{r}_{j+1}) / (\vec{r}_j^T \vec{r}_j)$

(14)
$$\vec{d}_{j+1} = \vec{r}_{j+1} + \beta_j \vec{d}_j$$

- End for
- (15) Use line search to find γ_k and set $\vec{x}_{k+1} = \vec{x}_k + \gamma_k \vec{p}_k$ End for

Figure 2: The truncated Newton algorithm