CS5321 Numerical Optimization Homework 3

Due April 12

1. (50%) The Rosenbrock function $f(x, y)=(1-x)^{2}+100\left(y-x^{2}\right)^{2}$ is shown below, whose minimizer is at $(1,1) .{ }^{1}$

(a) Derive the gradient and the Hessian of $f(x, y)$.
(b) Read the Matlab code polyline.m and polymod.m in
```
http://www4.ncsu.edu/~}\mp@subsup{}{}{c}\mathrm{ ck/matlab_darts.html
```

and explain which line search algorithm they are implemented.
(c) Use $\left(x_{0}, y_{0}\right)=(-1.2,1.0)$ to test the steepest descent method with the line search algorithm, implemented in steep.m (in the same repository as (b)), and plot its trace $\left\{\left(x_{k}, y_{k}\right)\right\}$. When calling steep, the code is like [x, ...] =steep(x0,@rosenbrock, ...). You may modify the code to recode the $\left\{\left(x_{k}, y_{k}\right)\right\}$ and use the plotting code from homework 2.
(d) Implement Newton's method with line search algorithm, and test it with $\left(x_{0}, y_{0}\right)=(-1.2,1.0)$. Plot its trace and compare the results, such as the number of iterations, to (c).

[^0]2. (25%) We had shown in class that when the line-search algorithm satisfies the Wolfe conditions, $\cos ^{2} \theta_{k}\left\|\nabla f_{k}\right\|^{2} \rightarrow 0$, where $\cos \theta_{k}=\frac{-\vec{p}_{k}^{T} \nabla f_{k}}{\left\|\nabla f_{k}\right\|\left\|\vec{p}_{k}\right\|}$. (Assume $\left\|\vec{p}_{k}\right\| \neq 0$ and $\left\|\nabla f_{k}\right\| \neq 0$.) Therefore, if the search direction of a method satisfies $\left|\cos \theta_{k}\right|>\delta$ for all k, then we can prove that $\nabla f_{k} \rightarrow \overrightarrow{0}$.
(a) Assume the matrix norm used satisfies the submultiplicative property, i.e. $\|A B\| \leq\|A\|\|B\|$. Prove that $1 /\|\vec{x}\| \geq 1 /\left(\|B \vec{x}\|\left\|B^{-1}\right\|\right)$ for any nonsingular matrix B.
(b) In the Newton-like methods, we replace the Hessian matrix with a symmetric positive definite matrix B_{k}, and use $\vec{p}_{k}=-B_{k}^{-1} \nabla f_{k}$ as the search direction. Use (a) to prove that if B_{k} is well conditioned, i.e. $\left\|B_{k}\right\|\left\|B_{k}^{-1}\right\| \leq M$ for some constant M, then
$$
\left|\cos \theta_{k}\right| \geq \frac{1}{M}
$$
(Hint: you may use the following property directly: For any symmetric positive definite matrix $B, \vec{u}^{T} B \vec{u} \geq 1 /\left\|B^{-1}\right\|$, where \vec{u} is a unit vector, $\|\vec{u}\|=1$.)
3. (25%) Prove the formula of SR1.
(a) Verify the Sherman-Morrison-Woodbury formula.

For $\hat{A}=A+\vec{a} \vec{b}^{T}$,

$$
\hat{A}^{-1}=A^{-1}-\frac{A^{-1} \vec{a} \vec{b}^{T} A^{-1}}{1+\vec{b}^{T} A^{-1} \vec{a}} .
$$

(Hint: prove $\hat{A} \hat{A}^{-1}=\hat{A}^{-1} \hat{A}=I$.)
(b) Use (a) and the fact that B_{k} is symmetric to prove that if $B_{k}=$ $B_{k-1}+\frac{\left(\vec{y}_{k}-B_{k-1} \vec{p}_{k}\right)\left(\vec{y}_{k}-B_{k-1} \vec{p}_{k}\right)^{T}}{\left(\vec{y}_{k}-B_{k-1} \vec{p}_{k}\right)^{T} \vec{p}_{k}}$, then

$$
B_{k}^{-1}=B_{k-1}^{-1}+\frac{\left(\vec{p}_{k}-B_{k-1}^{-1} \vec{y}_{k}\right)\left(\vec{p}_{k}-B_{k-1}^{-1} \vec{y}_{k}\right)^{T}}{\vec{y}_{k}^{T}\left(\vec{p}_{k}-B_{k-1}^{-1} \vec{y}_{k}\right)} .
$$

[^0]: ${ }^{1}$ You can find reference of this function in MO and Wikipedia.

