CS5321 Numerical Optimization Homework 2

Due March 25

1. (15\%) Prove that $\vec{a}^{T} \vec{b}=\|\vec{a}\|\|\vec{b}\| \cos (\theta)$ for $\vec{a}, \vec{b} \in \mathbb{R}^{n}$ and θ is the angle between \vec{a} and \vec{b}. (Hint: Let $\vec{c}=\vec{a}-\vec{b}$, and use the relation of $\|\vec{a}\|,\|\vec{b}\|,\|\vec{c}\|$ in a triangle to derive the result.)
Let $\vec{c}=\vec{a}-\vec{b}$.

$$
\begin{equation*}
\|\vec{c}\|^{2}=\vec{c}^{T} \vec{c}=(\vec{a}-\vec{b})^{T}(\vec{a}-\vec{b})=\vec{a}^{T} \vec{a}-2 \vec{a}^{T} \vec{b}+\vec{b}^{T} \vec{b}=\|\vec{a}\|^{2}-2 \vec{a}^{T} \vec{b}+\|\vec{b}\|^{2} \tag{1}
\end{equation*}
$$

From geometry viewpoint, as shown in the figure, we have
(a) $\|\vec{a}\|=\overline{p r},\|\vec{b}\|=\overline{p q},\|\vec{c}\|=\overline{r q}$.
(b) By the Pythagorean theorem, $\overline{p r}^{2}=\overline{r s}^{2}+\overline{p s}^{2}$ and $\overline{r q}^{2}=\overline{r s}^{2}+\overline{q s}^{2}$.
(c) By the trigonometric relations, $\overline{r s}=\|\vec{a}\| \sin \theta$ and $\overline{p s}=\|\vec{a}\| \cos \theta$. As the result, $\overline{q s}=\|\vec{b}\|-\|\vec{a}\| \cos \theta$.

From those relations, we have

$\|\vec{a}\|^{2} \sin ^{2} \theta=\|\vec{a}\|^{2}-\|\vec{a}\|^{2} \cos ^{2} \theta=\|\vec{c}\|^{2}-(\|\vec{b}\|-\|\vec{a}\| \cos \theta)^{2}$.
Therefore, $\|\vec{c}\|^{2}=\|\vec{a}\|^{2}-2\|\vec{a}\|\|\vec{b}\| \cos \theta+\|\vec{b}\|^{2}$.
Comparing it to (1), we have $\vec{a}^{T} \vec{b}=\|\vec{a}\|\|\vec{b}\| \cos \theta$.
2. (15%) Consider a function $f(x, y)=\left\{\begin{array}{cc}\frac{x y}{x+y} & (x, y) \neq(0,0) \\ 0 & (x, y)=(0,0)\end{array}\right.$. Show that its partial derivatives $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ exist at $(0,0)$, but the directional derivative $D(f,[1,1]) \neq \frac{\partial f}{\partial x}+\frac{\partial f}{\partial y}$ at $(0,0)$.

$$
\begin{gathered}
\frac{\partial f}{\partial x}(0,0)=\lim _{h \rightarrow 0} \frac{f(h, 0)-f(0,0)}{h}=\lim _{h \rightarrow 0} \frac{0-0}{h}=0 . \\
\frac{\partial f}{\partial y}(0,0)=\lim _{h \rightarrow 0} \frac{f(0, h)-f(0,0)}{h}=\lim _{h \rightarrow 0} \frac{0-0}{h}=0 . \\
D(f,[1,1])=\lim _{h \rightarrow 0} \frac{f(h, h)-f(0,0)}{h}=\lim _{h \rightarrow 0} \frac{h^{2} /(h+h)-0}{h}=\frac{1}{2} \neq \frac{\partial f}{\partial x}+\frac{\partial f}{\partial y}
\end{gathered}
$$

This example shows a counter example of $D(f, \vec{p}) \neq \nabla f^{T} \vec{p}$, because f is singular at $(0,0)$.
3. (20%) Compute the LDL decomposition of the matrix

$$
A=\left(\begin{array}{llll}
0 & 1 & 2 & 3 \\
1 & 2 & 2 & 2 \\
2 & 2 & 3 & 3 \\
3 & 2 & 3 & 4
\end{array}\right)
$$

(Hint: Use pivoting to stablize the computation, and put the pivotings into a permutation matrix P, such that $P A P^{T}=L D L^{T}$.)

First, we do the pivoting. Since the largest diagonal element is 4 , we pivot $(1,4)$. The permutation matrix is

$$
P=\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

And let

$$
A^{(0)}=P A P^{T}=(P A) P^{T}=\left(\begin{array}{llll}
4 & 2 & 3 & 3 \\
2 & 2 & 2 & 1 \\
3 & 2 & 3 & 2 \\
3 & 1 & 2 & 0
\end{array}\right)=\cdot\left(\begin{array}{llll}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34} \\
a_{41} & a_{42} & a_{43} & a_{44}
\end{array}\right)
$$

We want to have $P A P^{T}=A^{(0)}=L D L^{T}$. Let

$$
L=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
\ell_{21} & 1 & 0 & 0 \\
\ell_{31} & \ell_{32} & 1 & 0 \\
\ell_{41} & \ell_{42} & \ell_{43} & 1
\end{array}\right), D=\left(\begin{array}{cccc}
d_{1} & 0 & 0 & 0 \\
0 & d_{2} & 0 & 0 \\
0 & 0 & d_{3} & 0 \\
0 & 0 & 0 & d_{4}
\end{array}\right)
$$

The Algorithm 3.4 in the lecture note page 53 gives a systematic method to perform the LDL decomposition

$$
\begin{array}{lc}
\hline \hline \text { 1. } & \text { For } j=1,2, \ldots, n \\
\text { 2. } & c_{j j}=a_{j j}-\sum_{s=1}^{j-1} d_{s} \ell_{j s}^{2} \\
\text { 3. } & d_{j}=c_{j j} \\
\text { 4. } & \text { For } i=j+1, \ldots, n \\
\text { 5. } & c_{i j}=a_{i j}-\sum_{s=1}^{j-1} d_{s} \ell_{i s} \ell_{j s} \\
6 . & \ell_{i j}=c_{i j} / d_{j}
\end{array}
$$

So, follow the steps. For $j=1, d_{1}=c_{11}=a_{11}$ (step 2 and step 3), and

$$
\ell_{21}=a_{21} / d_{1}=.5, \ell_{31}=a_{31} / d_{1}=.75, \ell_{41}=a_{41} / d_{1}=.75,(\operatorname{step} 4,5,6) .
$$

For $j=2, d_{2}=c_{22}=a_{22}-d_{1} \ell_{21}^{2}=2-4 \times .5^{2}=1$ (step 2,3). Step 4,5,6 give

$$
\begin{aligned}
& c_{32}=a_{32}-d_{1} \ell_{31} \ell_{21}=2-4 \times .75 \times .5=.5 \rightarrow \ell_{32}=c_{32} / d_{2}=.5 \\
& c_{42}=a_{42}-d_{1} \ell_{41} \ell_{21}=1-4 \times .75 \times .5=-.5 \rightarrow \ell_{42}=c_{42} / d_{2}=-.5
\end{aligned}
$$

For $j=3, d_{3}=c_{33}=a_{33}-d_{1} \ell_{31}^{2}-d_{2} \ell_{32}^{2}=3-4 \times .75^{2}-1 \times .5^{2}=.5($ step 2,3).
Step 4,5,6 give

$$
c_{43}=a_{43}-d_{1} \ell_{41} \ell_{31}-d_{2} \ell_{42} \ell_{32}=2-4 \times .75 \times .75-1 \times .5 \times(-.5)=0,
$$

Therefore,

$$
\ell_{43}=c_{43} / d_{3}=0
$$

For $j=4$, step 2 and step 3 give

$$
\begin{aligned}
d_{4} & =c_{44}=a_{44}-d_{1} \ell_{41}^{2}-d_{2} \ell_{42}^{2}-d_{3} \ell_{43}^{2} \\
& =0-4 \times .75^{2}-1 \times(-.5)^{2}-.5 \times 0^{2}=-2.5
\end{aligned}
$$

The final answer is

$$
L=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
.5 & 1 & 0 & 0 \\
.75 & .5 & 1 & 0 \\
.75 & -.5 & 0 & 1
\end{array}\right), D=\left(\begin{array}{cccc}
4 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & .5 & 0 \\
0 & 0 & 0 & -2.5
\end{array}\right), P=\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right) .
$$

4. (50%) Let $f(x, y)=\frac{1}{2} x^{2}+\frac{9}{2} y^{2}$. This is a positive definite quadratic with minimizer at $\left(x^{*}, y^{*}\right)=(0,0)$.
(a) Derive the gradient g and the Hessian H of f.
(b) Write Matlab codes to implement the steepest descent method and Newton's method with $\vec{x}_{0}=(9,1)$, and compare their convergent results. The formula of the steepest descent method is

$$
\vec{x}_{k+1}=\vec{x}_{k}-\frac{\vec{g}_{k}^{T} \vec{g}_{k}}{\vec{g}_{k}^{T} H_{k} \vec{g}_{k}} \vec{g}_{k},
$$

and the formula of Newton's method is

$$
\vec{x}_{k+1}=\vec{x}_{k}-H_{k}^{-1} \vec{g}_{k},
$$

where $\vec{g}_{k}=g\left(\vec{x}_{k}\right)$ and $H_{k}=H\left(\vec{x}_{k}\right)$.
(c) Draw the trace of $\left\{\vec{x}_{k}\right\}$ for the steepest descent method and Newton's method. Figure 1 gives an example code for trace drawing.

```
function draw_trace()
% draw the contour of the function z = (x*x+9*y*y)/2;
step = 0.1;
X = 0:step:9;
Y = -1:step:1;
n = size(X,2);
m = size(Y,2);
Z = zeros(m,n);
for i = 1:n
    for j = 1:m
        Z(j,i) = f(X(i),Y(j));
    end
end
contour(X,Y,Z,100)
% plot the trace
% You can record the trace of your results and use the following
% code to plot the trace.
xk = [9 8 8 7 7 6 6 5 5 4 4 3 3 2 2];
yk = [. 5 . . -. 5 -. . . . 5 . 5 -. 5 -. 5 . 5 . . - . 5 -. 5 . . . . 5 -. 5];
hold on; % this is important!! This will overlap your plots.
plot(xk,yk,'-','LineWidth',3);
hold off;
% function definition
    function z = f(x,y)
        z = (x*x+9*y*y)/2;
    end
end
```


4
Figure 1: Function contour and a trace of (xk, yk).

