CS5321 Numerical Optimization Homework 2

Due March 25

1. (15%) Prove that $\vec{a}^{T} \vec{b}=\|\vec{a}\|\|\vec{b}\| \cos (\theta)$ for $\vec{a}, \vec{b} \in \mathbb{R}^{n}$ and θ is the angle between \vec{a} and \vec{b}. (Hint: Let $\vec{c}=\vec{a}-\vec{b}$, and use the relation of $\|\vec{a}\|,\|\vec{b}\|,\|\vec{c}\|$ in a triangle to derive the result.)
2. (15%) Consider a function $f(x, y)=\left\{\begin{array}{cc}\frac{x y}{x+y} & (x, y) \neq(0,0) \\ 0 & (x, y)=(0,0)\end{array}\right.$. Show that its partial derivatives $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ exist at $(0,0)$, but the directional derivative $D(f,[1,1]) \neq \frac{\partial f}{\partial x}+\frac{\partial f}{\partial y}$ at $(0,0)$.
3. (20%) Compute the LDL decomposition of the matrix

$$
A=\left(\begin{array}{llll}
0 & 1 & 2 & 3 \\
1 & 2 & 2 & 2 \\
2 & 2 & 3 & 3 \\
3 & 2 & 3 & 4
\end{array}\right)
$$

(Hint: Use pivoting to stablize the computation, and put the pivotings into a permutation matrix P, such that $P A P^{T}=L D L^{T}$.)
4. (50%) Let $f(x, y)=\frac{1}{2} x^{2}+\frac{9}{2} y^{2}$. This is a positive definite quadratic with minimizer at $\left(x^{*}, y^{*}\right)=(0,0)$.
(a) Derive the gradient g and the Hessian H of f.
(b) Write Matlab codes to implement the steepest descent method and Newton's method with $\vec{x}_{0}=(9,1)$, and compare their convergent results. The formula of the steepest descent method is

$$
\vec{x}_{k+1}=\vec{x}_{k}-\frac{\vec{g}_{k}^{T} \vec{g}_{k}}{\vec{g}_{k}^{T} H_{k} \vec{g}_{k}} \vec{g}_{k},
$$

and the formula of Newton's method is

$$
\vec{x}_{k+1}=\vec{x}_{k}-H_{k}^{-1} \vec{g}_{k},
$$

where $\vec{g}_{k}=g\left(\vec{x}_{k}\right)$ and $H_{k}=H\left(\vec{x}_{k}\right)$.
(c) Draw the trace of $\left\{\vec{x}_{k}\right\}$ for the steepest descent method and Newton's method. Figure 1 gives an example code for trace drawing.

```
function draw_trace()
% draw the contour of the function z = (x*x+9*y*y)/2;
step = 0.1;
X = 0:step:9;
Y = -1:step:1;
n = size(X,2);
m = size(Y,2);
Z = zeros(m,n);
for i = 1:n
    for j = 1:m
        Z(j,i) = f(X(i),Y(j));
    end
end
contour(X,Y,Z,100)
% plot the trace
% You can record the trace of your results and use the following
% code to plot the trace.
xk = [9 8 8 7 7 6 6 5 5 4 4 3 3 2 2];
yk = [. 5 . . -. 5 -. . . . 5 . 5 -. 5 -. 5 . 5 . . - . 5 -. 5 . . . . 5 -. 5];
hold on; % this is important!! This will overlap your plots.
plot(xk,yk,'-','LineWidth',3);
hold off;
% function definition
    function z = f(x,y)
        z = (x*x+9*y*y)/2;
    end
end
```


Figure 1: Function contour and a trace of (xk, yk).

