
Nonlinear Problems
in One Variable

We begin our study of the solution of nonlinear problems by discussing prob-
lems in just one variable: finding the solution of one nonlinear equation in one
unknown, and finding the minimum of a function of one variable. The reason
for studying one-variable problems separately is that they allow us to see those
principles for constructing good local, global, and derivative-approximating
algorithms that will also be the basis of our algorithms for multivariable
problems, without requiring knowledge of linear algebra or multivariable cal-
culus. The algorithms for multivariable problems will be more complex than
those in this chapter, but an understanding of the basic approach here should
help in the multivariable case.

Some references that consider the problems of this chapter in detail are
Avriel (1976), Brent (1973), Conte and de Boor (1980), and Dahlquist, Bjorck,
and Anderson (1974).

2.1 WHAT IS NOT POSSIBLE

Consider the problem of finding the real roots of each of the following three
nonlinear equations in one unknown:

f1(x) = x4 - 12x3 + 47x2 - 60x;

f2 (X) = x
4 - 12x3 + 47x2 - 60x + 24,

f3(x) = x
4 - 12x3 + 47x2 - 60x + 24.1.
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(see Figure 2.1.1). It would be wonderful if we had a general-purpose computer
routine that would tell us: "The roots of f1(x) are x = 0, 3, 4, and 5; the real
roots of f2(x) are x = 1 and x 0.888 ;f3(x) has no real roots."

It is unlikely that there will ever be such a routine. In general, the
questions of existence and uniqueness—does a given problem have a solution,
and is it unique?—are beyond the capabilities one can expect of algorithms
that solve nonlinear problems. In fact, we must readily admit that for any
computer algorithm there exist nonlinear functions (infinitely continuously
differentiable, if you wish) perverse enough to defeat the algorithm. Therefore,
all a user can be guaranteed from any algorithm applied to a nonlinear prob-
lem is the answer, "An approximate solution to the problem
is ," or, "No approximate solution to the problem was
found in the alloted time." In many cases, however, the supplier of a nonlinear
problem knows from practical considerations that it has a solution, and either
that the solution is unique or that a solution in a particular region is desired.
Thus the inability to determine the existence or uniqueness of solutions is
usually not the primary concern in practice.

It is also apparent that one will be able to find only approximate solu-
tions to most nonlinear problems. This is due not only to the finite precision of
our computers, but also to the classical result of Galois that for some poly-
nomials of degree n > 5, no closed-form solutions can be found using integers
and the operations +, —, x, -=-, exponentiation, and second through nth
roots. Therefore, we will develop methods that try to find one approximate
solution of a nonlinear problem.

2.2 NEWTON'S METHOD FOR SOLVING
ONE EQUATION IN ONE UNKNOWN

Our consideration of finding a root of one equation in one unknown begins
with Newton's method, which is the prototype of the algorithms we will gener-
ate. Suppose we wish to calculate the square root of 3 to a reasonable number
of places. This can be viewed as finding an approximate root x * of the func-

Figure 2.1.1 The equation f1 (x) = x4 - 12x3 + 47x2 - 60x



The logical thing to do next is to apply the same process from the new
current estimate xf = 1.75. Using (2.2.1) gives x+ = 1.75 - (0.0625/3.5) =
1.732 , which already has four correct digits of One more iteration gives
x + = 1.7320508, which has eight correct digits.

The method we have just developed is called the Newton-Raphson
method or Newton's method. It is important to our understanding to take a
more abstract view of what we have done. At each iteration we have construc-
ted a local model of our function /(x) and solved for the root of the model. In

Figure 2.2.1 An iteration of Newton's method on f(x) = x2 — 3 (not to
scale)
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tion/(x) = x2 — 3 (see Figure 2.2.1). If our initial or current estimate of the
answer is xc = 2, we can get a better estimate x + by drawing the line that is
tangent to f(x) at (2, f(2)) = (2, 1), and finding the point x + where this line
crosses the x axis. Since

and

we have that

which gives

or
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the present case, our model

is just the unique line with function value f(xc) and slope f(xc) at the point xc .
[We use capital M to be consistent with the multidimensional case and to
differentiate from minimization problems where our model is denoted by
mc(x).] It is easy to verify that Mc(x) crosses the x axis at the point x+ defined
by (2.2.1).

Pedagogical tradition calls for us to say that we have obtained Newton's
method by writing f(x) as its Taylor series approximation around the current
estimate xc ,

and then approximating f(x) by the affine* portion of this series, which nat-
urally is given also by (2.2.2). Again the root is given by (2.2.1). There are
several reasons why we prefer a different approach. It is unappealing and
unnecessary to make assumptions about derivatives of any higher order than
those actually used in the iteration. Furthermore, when we consider multivari-
able problems, higher-order derivatives become so complicated that they are
harder to understand than any of the algorithms we will derive.

Instead, Newton's method comes simply and naturally from Newton's
theorem,

It seems reasonable to approximate the indefinite integral by

and once more obtain the affine approximation to f(x) given by (2.2.2). This
type of derivation will be helpful to us in multivariable problems, where geo-
metrical derivations become less manageable.

Newton's method is typical of methods for solving nonlinear problems; it
is an iterative process that generates a sequence of points that we hope come
increasingly close to a solution. The obvious question is, "Will it work?" The

* We will refer to (2.2.2) as an affine model, although colloquially it is often called a linear
model. The reason is that an affine model corresponds to an affine subspace through (x, f(x )), a line
that does not necessarily pass through the origin, whereas a linear subspace must pass through the
origin.
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answer is a qualified "Yes." Notice that if f(x) were linear, Newton's method
would find its root in one iteration. Now let us see what it will do for the
general square-root problem;

given a > 0, find x such that /(x) = x2 — a = 0,

starting from a current guess xc ± 0. Since

one has

or, using relative error, one has

Thus as long as the initial error is less than the new error
will be smaller than the old error and eventually each

new error will be much smaller than the previous error. This agrees with our
experience for finding the square root of 3 in the example that began this
section.

The pattern of decrease in error given by (2.2.4) is typical of Newton's
method. The error at each iteration will be approximately the square of the
previous error, so that, if the initial guess is good enough, the error will
decrease and eventually decrease rapidly. This pattern is known as local q-
quadratic convergence. Before deriving the general convergence theorem for
Newton's method, we need to discuss rates of convergence.

2.3 CONVERGENCE OF SEQUENCES
OF REAL NUMBERS

Given an iterative method that produces a sequence of points xl x 2 , . . . , from
a starting guess x0, we will want to know if the iterates converge to a solution
x *, and if so, how quickly. If we assume that we know what it means to write

for a real sequence {ak}, then the following definition characterizes the proper-
ties we will need.

Definition 2.3.1 Let x * e R, xk e R, k = 0, 1, 2,. . . . Then the sequence
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{|xk} = {x0, x1, x2, ...} is said to converge to x,, if

If in addition, there exists a constant c e [0, 1) and an integer such that

for all then {xk} is said to be q-linearly convergent to x* If for some sequen
that converges to 0,

then {xk} is said to converge q-superlinearly to x* . If there exist constants
and such that {xk} converges to x* and for all

then {xk} is said to converge to x* with q-order at least p. If , - ' or 3, the
convergence is said to be q-quadratic or q-cubic, respectively.

If {xk} converges to x* and, in place of (2.3.2),

for some fixed integer j, then {xk} is said to bey-step q-superlinearly convergent
to x*. If {xk} converges to x,,, and, in place of (2.3.3), for k > k,

for some fixed integer j, then {xk} is said to have j-step q-order convergence of
order at least p.

An example of a q-linearly convergent sequence is

This sequence converges to x* = 1 with c = on a CDC machine it will take
48 iterations until fl(xk) = 1. An example of a g-quadratically convergent se-
quence is

which converges to x* = 1 with c = 1; on a CDC machine, fl(x6) will equal 1.
In practice, q-linear convergence can be fairly slow, whereas q-quadratic or
g-superlinear convergence is eventually quite fast. However, actual behavior
also depends upon the constants c in (2.3.1-2.3.3); for example, q-linear con-
vergence with c = 0.001 is probably quite satisfactory, but with c = 0.9 it is
not. (For further examples see Exercises 2 and 3). It is worth emphasizing that
the utility of g-superlinear convergence is directly related to how many iter-
ations are needed for ck to become small.

for all
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The prefix "q" stands for quotient and is used to differentiate from "r"
(root) orders of convergence. K-order* is a weaker type of convergence rate; all
that is said of the errors | xk — *„, |, of a sequence with r-order p, is that they
are bounded above by another sequence of g-order p. A definitive reference is
Ortega and Rheinboldt [1970]. An iterative method that will converge to the
correct answer at a certain rate, provided it is started close enough to the
correct answer, is said to be locally convergent at that rate. In this book we will
be interested mainly in methods that are locally g-superlinearly or q-
quadratically convergent and for which this behavior is apparent in practice.

2.4 CONVERGENCE OF NEWTON'S
METHOD

We now show that, for most problems, Newton's method will converge q-
quadratically to the root of one nonlinear equation in one unknown, provided
it is given a good enough starting guess. However, it may not converge at all
from a poor start, so that we need to incorporate the global methods of
Section 2.5. The local convergence proof for Newton's method hinges on an
estimate of the errors in the sequence of affine models Mc(x) as approxi-
mations to f(x). Since we obtained the approximations by using f ' (x c)(x — xc)
to approximate

we are going to need to make some smoothness assumptions on/' in order to
estimate the error in the approximation, which is

First we define the notion of Lipschitz continuity.

Definition 2.4.1 A function g is Lipschitz continuous with constant y in
a set X, written g e Lipy(X), if for every x, y e X,

In order to prove the convergence of Newton's method, we first prove a
simple lemma showing that if f'(x) is Lipschitz continuous, then we can obtain
a bound on how close the affine approximationf(x) +f'(x)(y — x) is to f (y).

* We will capitalize the prefix letters R and Q when they begin a sentence, but not
otherwise.
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LEMMA 2.4.2 For an open interval D, let f: D-> R and let f' e Lipy(D).
Then for any x, v e D

Proof. From basic calculus dz, or equivalently,

Making the change of variables

z = x + t(y- x), dz = dt(y - x),

(2.4.2) becomes

and so by the triangle inequality applied to the integral and the Lipschitz
continuity of f',

Note that (2.4.1) closely resembles the error bound given by the Taylor
series with remainder, with the Lipschitz constant y taking the place of a
bound on for D. The main advantage of using Lipschitz continuity
is that we do not need to discuss this next higher derivative. This is especially
convenient in multiple dimensions.

We are now ready to state and prove a fundamental theorem of numeri-
cal mathematics. We will prove the most useful form of the result and leave the
more general ones as exercises (see Exercises 13-14.)

THEOREM 2.4.3 Let f: D R, for an open interval D, and let /' 6
Lipy(D). Assume that for some for every x e D. If
f(x) = 0 has a solution x* e D, then there is some n > 0 such that: if
xo — xo <n then the sequence {xk} generated by

exists and converges to x*.. Furthermore, for k = 0, 1, ...,



Nonlinear Problems in One Variable Chap. 2 23

Proof. Let (0,1), let n be the radius of the largest open interval around
x* that is contained in D, and define 77 = mm{n, (2 / )}. We will show by
induction that for k = 0, 1, 2 , . . . , (2.4.3) holds, and

The proof simply shows at each iteration that the new error \xk+l — x,|
is bounded by a constant times the error the affine model makes in
approximatingf at x*., which from Lemma 2.4.2 is 0(|xk — x , | 2) . For
k = 0,

The term in brackets i s f ( x * ) — M0(x#), the error at x,,, in the local affine
model at xc = x0. Thus from Lemma 2.4.2,

and by the assumptions onf'(x)

Since
proof of the induction step then proceeds identically.

The condition in Theorem 2.4.3 that/'(x) have a nonzero lower bound in
D simply means thatf'(x*) must be nonzero for Newton's method to converge
quadratically. Indeed, if f'(x*) = 0, then x* is a multiple root, and Newton's
method converges only linearly (see Exercise 12). To appreciate the difference,
we give below sample iterations of Newton's method applied to f1(x) = x2 — 1
and f2(x) = x2 — 2x + 1, both starting from x0 = 2. Notice how much more
slowly Newton's method converges on f2(x) becausef'2(x*) = 0.

EXAMPLE 2.4.4 Newton's Method Applied to Two Quadratics (CDC, Single
Precision)

f1(x) = x2 - 1 f2(x) = x2 - 2x + 1

2
1.25
1.025
1.0003048780488
1.0000000464611
1.0
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Figure 2.4.1 Newton's method applied to/(x) = arctan(x)

It is also informative to examine the constant y/2p involved in the q-
quadratic convergence relation (2.4.3). The numerator y, a Lipschitz constant
for/' on D, can be considered a measure of the nonlinearity of/. However, .y is
a scale-dependent measure; multiplying / or changing the units of x by a
constant will scale/' by that constant without making the function more or
less nonlinear. A partially scale-free measure of nonlinearity is the relative rate of
change in f'(x), which is obtained by dividing y by f'(x). Thus, since p is a
lower bound on f'(x) for x e D, y/p is an upper bound on the relative nonlin-
earity off(x), and Theorem 2.4.3 says that the smaller this measure of relative
nonlinearity, the faster Newton's method will converge. If f is linear, then y = 0
and Xj = x*.

Theorem 2.4.3 guarantees the convergence of Newton's method only
from a good starting point x0, and indeed it is easy to see that Newton's
method may not converge at all if x0 — x* is large. For example, consider
the function f(x) = arctan x (see Figure 2.4.1). For some xc € [1.39, 1.40], if
x0 = xc, then Newton's method will produce the cycle x1 = — xc, x2 = xc,
x3 = — x c , . . . . If x0 < xc, Newton's method will converge to x* = 0, but if
x0 > xc, Newton's method will diverge; i.e., the error xk — x* | will increase

at each iteration. Thus Newton's method is useful to us for its fast local
convergence, but we need to incorporate it into a more robust method that
will be successful from farther starting points.

2.5 GLOBALLY CONVERGENT
METHODS* FOR SOLVING ONE
EQUATION IN ONE UNKNOWN

We will use a simple philosophy to incorporate Newton's method into a
globally convergent algorithm: use Newton's method whenever it seems to be
working well, otherwise fall back on a slower but sure global method. This
strategy produces globally convergent algorithms with the fast local conver-

* For our definition of "global method," see the last paragraph of Section 1.1.
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gence of Newton's method. In this section we discuss two global methods and
then show how to combine a global method with Newton's method into a
hybrid algorithm. We also discuss the stopping tests and other computer-
dependent criteria necessary to successful computational algorithms.

The simplest global method is the method of bisection. It makes the
somewhat reasonable assumption that one starts with an interval [x0, z0] that
contains a root. It sets xl to the midpoint of this interval, chooses the new
interval to be the one of [x0, x1] or [x1, z0] that contains a root, and con-
tinues to halve the interval until a root is found (see Figure 2.5.1). This is
expressed algebraically as:

given x0, z0 such that f (x 0 ) f (z 0 ) < 0,

fork = 0, 1, 2, . . . ,do

The method of bisection always works in theory, but it is guaranteed
only to reduce the error bound by for each iteration. This makes the method
very marginal for practical use. Programs that use bisection generally do so
only until an xk is obtained from which some variant of Newton's method will
converge. The method of bisection also does not extend naturally to multiple
dimensions.

A method more indicative of how we will proceed in n-space is the
following. Think of Newton's method as having suggested not only the step
XN = xc —f(xc)/f'(xc), but also the direction in which that step points.
[Assume Although the Newton step may actually cause an increase
in the absolute value of the function, its direction always will be one in which
the absolute function value decreases initially (see Figure 2.5.2). This should be
obvious geometrically; for the simple proof, see Exercise 16. Thus, if the
Newton point XN doesn't produce a decrease in | /(x) |, a reasonable strat-
egy is to backtrack from XN toward xc until one finds a point x+ for

Figure 2.5.1 The method of bisection
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Note that this strategy does not require an initial interval bracketing a root.
Iteration (2.5.1) is an example of a hybrid algorithm, one that attempts to

combine global convergence and fast local convergence by first trying the
Newton step at each iteration, but always insisting that the iteration decreases
some measure of the closeness to a solution. Constructing such hybrid algo-
rithms is the key to practical success in solving multivariable nonlinear prob-
lems. Below is the general form of a class of hybrid algorithms for finding a
root of one nonlinear equation; it is meant to introduce and emphasize those
basic techniques for constructing globally and fast locally convergent algo-
rithms that will be the foundation of all the algorithms in this book.

ALGORITHM 2.5.1 General hybrid quasi-Newton algorithm for solving
one nonlinear equation in one unknown:

given f: R —> R, x0,

for k = 0, 1, 2, . . . ,do

1. decide whether to stop; if not:

2. make a local model of faround xk, and find the point XN that
solves (or comes closest to solving) the model problem.

3. (a) decide whether to take xk+1 = XN, if not,

(b) choose xk + 1 using a global strategy (make more conser-
vative use of the solution to the model problem).

Figure 2.5.2 Backtracking from the Newton step

which A possible iteration is
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Step 1 is discussed below; it requires our first use of computer-dependent
and problem-dependent tolerances. Step 2 usually involves calculating the
Newton step, or a variant without derivatives (see Section 2.6). Equation (2.5.1)
is an example of Step 3(a)-{b). We will see in Chapter 6 that the criterion in
Step 3(a) has to be chosen with only a little bit of care to assure the global
convergence in most cases of the hybrid algorithm to a solution.

Deciding when to stop is a somewhat ad hoc process that can't be perfect
for every problem, yet it calls for considerable care. Since there may be no
computer-representable x* such that f ( x * ) = 0, one must decide when one is
"close enough." This decision usually takes two parts: "Have you approxi-
mately solved the problem?" or "Have the last two (or few) iterates stayed in
virtually the same place?" The first question is represented by a test such as,
"Is | f(x+)| < T!?" where the tolerance TI is chosen to reflect the user's idea of
being close enough to zero for this problem. For example, t1 might be set to
(macheps)1/2. Naturally this test is very sensitive to the scale off(x), and so it is
important that a routine instruct the user to choose T1, or scale/, so that an
x + that satisfies f(x+) | < Tt will be a satisfactory solution to the problem.
Partly to guard against this condition's being too restrictive, the second
question is included and it is tested by a relation such as, "Is (x+ — xc

|x+ ) < T2?" A reasonable tolerance is T2 = (macheps)1/2, which corresponds
to stopping whenever the left half of the digits of xc and x+ agree, though any
T2 greater than macheps can be selected. Since x+ might be close to zero, the
second test is usually modified to something like, "Is (x + — xc ./max {|x+ |,
|xc|} < T2?" A better test uses a user-supplied variable typx containing the
typical size of x in the place of the | xc | in the denominator (see Exercise 17), so
that the stopping condition on a CDC machine might be,

In practicef(x+) usually gets small before the step does in any problem for
which local convergence is fast, but for a problem on which convergence is
only linear, the step may become small first. The reader can already see that
the choice of stopping rules is quite a can of worms, especially for poorly
scaled problems. We will treat it more completely in Chapter 7.

2.6 METHODS WHEN DERIVATIVES
ARE UNAVAILABLE

In many practical applications, f(x) is not given by a formula; rather it is the
output from some computational or experimental procedure. Since f ' ( x ) us-
ually is not available then, our methods that use values of f'(x) to solve
f(x) = 0 must be modified to require only values of/(x).
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