Software engineering

What makes software development hard?

L @

—_—

P
%4:
[
£ I!A(

AN

A 2

Size makes differences

Small program

Working system

Code size (lines) Tens to hundreds 104~107
Complexity Low High
Repeated updates No Yes

Developer(s)

Usually one person

Usually many people

Reliability requirement

Low

High

Traditional Software
Engineering Engineering
Off the shelf . Often Rarely
components available
Required performance Within tolerances Perfect
Quality metrics Mean time to failure Unclear
Scientific basis Physics Unclear
The software life cycle
e
uiramenis !
specification = —
Design
Design|| |x Ty — Modification 4
Implementation A
Development 1.5-6x -\,\‘
Testing

Maintenance

Cost to change >

More efforts put on the
early development will win
tremendous payoff later

T Repair, maintenance to fix

bugs, or adapt new demands

OR, discard old software
and redevelop the new one

from scratch!?

2010/11/22

Waterfall model

» Analysis (requirement specification)

Identify the needs of the users, and compiles them to
requirements, further to technical specifications

» Design
Focus on how to accomplish these specifications
Applies modular decomposition to breakdown the entire
complexity
» Implementation
Actual coding, creating data files & database
» Testing

Tightly coupled with implementation, bottom-up from each
module

Analysis phase: requirement specification

» Stakeholder: future users
From an entity, such as a company or agency
From free markets, such as the Internet
» Software requirements specification
Wants, needs, costs, and feasibility
Hardware, software, data, human factors
Economic considerations and technical considerations

1 Abilities TR

L
computer u{ﬁ | —i'i;
e

human

> ."_*‘5_ At
1950 1990 2030 . =

Design phase: modularization

» Modules: the division of software into manageable units,

Ex: the procedures or objects
» Goal: Minimize coupling & maximize cohesion

» Coupling: the independence between modules
Control coupling:a module passes control to another module
EX: module A calls module B
Data coupling: sharing data between modules
Implicit coupling: global variables (BAD)
» Cohesion: internal binding within a module
Logical cohesion: logical similarity (not very good)

Functional cohesion: components are focused around
performance of a single activity (better)

Implementation phase

» Do you know what this code does?

int i;main(){forGi["]<i;++i){--i;

world\n",'/'I'I"));}read(j,i,p){write

» It can be compiled and executed, but unless you want to
show how bad a programming style can be

» Programming style: rules to help programmers to read
and understand source code and to avoid bugs/errors
Ex: Clear statements and type definitions

EX1:char* dest, src; //what’s src’s type?
EX2:*p++; // which value is increased, p or *p?

Ex: Consistent naming conventions

2010/11/22

Good comments

» For a file/module
Description of functionality, a revision date (version), author
(copyright,history,references)
» For a function
Purpose, algorithm, input/output arguments
Pre-conditions: what must be true before a function call
EX:int binarySearch(int d[], int x)
precondition:Array d is sorted(in which order)
Post-conditions: what must be true after a function call

postcondition: returnvValue>=0 and d[returnvalue]==x or
returnValue==-1 and x does not occur in d

» For variables and statements
Purpose, usage, properties ...

Testing phase

» Glass-box testing: tester is aware of the inner structure

of the software and use the knowledge in designing tests.

Basis path testing: find a set of test data so that each
instruction is executed at least once
EX:int binarySearch(int d[], int x)
Test data = {X is in d, X is not in d}
» Black-box testing: tester does not rely on the knowledge
of software interior composition
Boundary value analysis:
EX:int binarySearch(int d[], int x)
Test case where d is empty
Beta testing: test by users with real-life input (test data)
Alpha test is the test performed by developers

2010/11/22

