
2010/11/22

1

Software engineering

What makes software development hard?

Traditional
Engineering

Software
Engineering

“Off the shelf”
components available
Required performance

Often Rarely

Within tolerances Perfect

Quality metrics
Scientific basis

Mean time to failure

Physics

Unclear

Unclear

Size makes differences

Small program Working system
Code size (lines)
Complexity

Tens to hundreds 104~107

Low High

Repeated updates
Developer(s)
Reliability requirement

No

Usually one person

Yes

Usually many people

Low High

The software life cycle

Repair, maintenance to fix
bugs, or adapt new demands

Design

Development

Maintenance 60-100x

1x

1.5-6x

Cost to change 

OR, discard old software
and redevelop the new one
from scratch!?

More efforts put on the
early development will win
tremendous payoff later

2010/11/22

2

Waterfall model
 Analysis (requirement specification)
 Identify the needs of the users, and compiles them to

requirements, further to technical specifications
 Design
 Focus on how to accomplish these specifications
 Applies modular decomposition to breakdown the entire

complexity
 Implementation
 Actual coding, creating data files & database
T i Testing
 Tightly coupled with implementation, bottom-up from each

module

Analysis phase: requirement specification
 Stakeholder: future users
 From an entity, such as a company or agency
 Fr m free markets s ch as the Internet From free markets, such as the Internet

 Software requirements specification
 Wants, needs, costs, and feasibility
 Hardware, software, data, human factors
 Economic considerations and technical considerations

Abilities Abilities

1950 1990 2030

human

computer

Design phase: modularization
 Modules: the division of software into manageable units,
 Ex: the procedures or objects

G l Mi i i li & i i h i Goal: Minimize coupling & maximize cohesion
 Coupling: the independence between modules
 Control coupling: a module passes control to another module

 EX: module A calls module B

 Data coupling: sharing data between modules
 Implicit coupling: global variables (BAD)p p g g ()

 Cohesion: internal binding within a module
 Logical cohesion: logical similarity (not very good)
 Functional cohesion: components are focused around

performance of a single activity (better)

Implementation phase
 Do you know what this code does?

int i;main(){for(;i["]<i;++i){--i;}"];read('-'-'-',i+++"hello,
ld!\ " '/'/'/')) } d(){ (/ /) }

 It can be compiled and executed, but unless you want to
show how bad a programming style can be

 Programming style: rules to help programmers to read
and understand source code and to avoid bugs/errors
 Ex: Clear statements and type definitions

world!\n",'/'/'/'));}read(j,i,p){write(j/p+p,i---j,i/i);}

 Ex: Clear statements and type definitions
 EX1: char* dest, src; //what’s src’s type?
 EX2: *p++; // which value is increased, p or *p?

 Ex: Consistent naming conventions
 …

2010/11/22

3

Good comments
 For a file/module
 Description of functionality, a revision date (version), author

(copyright,history,references)(py g y)
 For a function
 Purpose, algorithm, input/output arguments
 Pre-conditions: what must be true before a function call

 EX: int binarySearch(int d[], int x)

 precondition: Array d is sorted(in which order)
 Post-conditions: what must be true after a function call

 postcondition: returnValue>=0 and d[returnValue]==x or
returnValue==-1 and x does not occur in d

 For variables and statements
 Purpose, usage, properties …

Testing phase
 Glass-box testing: tester is aware of the inner structure

of the software and use the knowledge in designing tests.
 Basis path testing: find a set of test data so that each  Basis path testing: find a set of test data so that each

instruction is executed at least once
 EX: int binarySearch(int d[], int x)
 Test data = {x is in d, x is not in d}

 Black-box testing: tester does not rely on the knowledge
of software interior composition
 B d l l i  Boundary value analysis:

 EX: int binarySearch(int d[], int x)
 Test case where d is empty

 Beta testing: test by users with real-life input (test data)
 Alpha test is the test performed by developers

