Programming language

Evolution of programming languages

[1 1 [1
1 !49 AL Schemee | |
[" 1 1 [[
1] 1 1 I 1
1] 1 1 L4 L
1] | Smaitialk | Vs Besic | Jawa | "
[] 1 1 [1
Miechine | FORTRAN ' Basie C! \Adz L !
Lorguages | " ' 4 i
, TOBOL ALGoL ARL | Pasal | . .
1 Igess | Prolg ! I 1
[] ; : D 2
1] 1 1 I 1
n " 1 1 L 1
150 L) WD TR TR ezt

» Why do people need/invent so many different
programming languages?
Isn’t C good enough?

Outline

» Imperative paradigm
A sequence of commands that manipulate data to produce the
desired results. (C, JavaScript, Fortran, Matlab)

» Object-oriented paradigm
A collection of objects that can perform actions and interact
with other objects. (C++, Java, C#, VisualBasic)

» Declarative paradigm
Describe the problem to be solved rather than the algorithms.
(Prolog,Verilog, VHDL, Lex/Yacc, AMPL, SQL, HTML, latex)

» Functional paradigm

A composition of functions (in math sense) that accept inputs
and produce outputs. (LISP, Mathematica)

Imperative paradigm

» High level languages that simplify the machine languages
Programmers need to describe the procedures (how to do)
» Programming primitives
Declarative statements: define variable/function names
Imperative statements: assignment, if-then-else, for-loop,...
Comments: explanation of statements
Directives: assist compiler/interpreter for code generation

#include <stdio.h>
/* cntrl d terminates */
int main(int argc, char *argv[]) {
intc;
while((¢ = getchar()) != EOF) {
putchar(c);
}

}

2010/11/22

Object-orient paradigm
» Object: data abstraction+procedures to process the data

» Three important concepts in OOP
Use inheritance to relate objects =»achieve code reuse.
Use polymorphism to describe variation = allow dynamic
binding.
Use encapsulation to hide information. = allow each object
be modified independently.

» In OOP you can concentrate on one object at a time.

Very good for developing large systems, such as window
system, network protocol, etc.

Case study: window system

» How to create so many different types of windows (easily)?

Specification

» All windows have some basic properties
Location, size, resizable, shown/hidden
» All the windows need some basic functions
Be able to sense the mouse movement/clicks, ...
Be able to be created, destroyed, shown, hidden, ...
» Different types of windows behave differently for input
Button: when mouse clicks, it shows sunken figure

Menu item: when mouse clicks, it pops a submenu

» Windows have interaction with each others
Ex:The child window needs be closed with its parent window.

Using imperative programming
» Method |: define structs for different windows and write
functions for them
Most functions will be similar
When changing one property, you need to change all structs
» Method 2: define a big struct that contains everything and
write functions for it.
Inefficient: the functions will be full of if-then-else statements

Very difficult to debug and to maintain.

» DON'T do either of them. We will discuss more in the
software engineering.

2010/11/22

Declarative paradigm

» A programming paradigm that expresses the problem to
be solved rather than the algorithms.
Imperative languages need to describe algorithms explicitly.
Uses backend engine to “solve” problems.
It is usually domain specific.
Prolog, HTML, Verilog, VHDL, Lex/Yacc, AMPL, SQL
Many languages hybrid declarative and imperative paradigms.

Case study: HTML

» Hyper Text Markup Language: describes the display and
format of text, graphics, hyperlink to other html files...

e, e gy mctonaledd ey HATRAL.
3 demamtration page - wicrwsett... (2 |[5]5]
Te B e fowim ik b
Ty iicaning;
[— entmia
[S My Web Page
<titl tion pages/tiklos Click: hiere for another page
={means
e
o || ey gt =hl:My Wab Paga-/hls
by e wmaClick hers for smother padm.« /e
< body=
i P
;!I v /hemls

Functional paradigm

» Computation=evaluation of math functions.

The output value of a “function” depends only on the
arguments that are input to the function

» It avoids state and mutable data.
Imperative programming emphasizes changes states.
We will see an example for their differences.

» It uses recursion instead of iteration (loop)

Case study: Lisp

» The first functional programming language
» Syntax

Atom: symbol or number
List: consists of 0 or L
more expression $ $ i

Ex: (42 69 613) 42 €3 613

The first atom in the list is an “operator”
Ex: (+ (*3 (+ | (- 42 (+ 3 4))))) outputs ?
Recursion:

(defun factorial (n)
(if (<=nl)
|
(* n (factorial (- n 1)))))

compute n!

2010/11/22

List evaluation

» Ex:(+123(*45)6)
Step1.(+123%6)
=(*45)

Step 2. the operation is +,
add all atoms

Step 3. found 1, integer

Step 4. found 2, integer

Step 5. found 3, integer

Step 6. found (* 4 5), list.

evaluates the list first

Step 7. the operator is *,
multiply all atoms

Step 8. found 4, integer

Step 9. found 5, integer

Step 10. end of list, evaluate
4*5=20

Step 11. found 6, integer

Step 12. end of list, evaluate
1+2+3+20+6=32

2010/11/22

