
2010/11/22

1

Programming language

Evolution of programming languages

 Why do people need/invent so many different
programming languages?
 Isn’t C good enough?

Outline
 Imperative paradigm
 A sequence of commands that manipulate data to produce the

desired results (C JavaScript Fortran Matlab)desired results. (C, JavaScript, Fortran, Matlab)

 Object-oriented paradigm
 A collection of objects that can perform actions and interact

with other objects. (C++, Java, C#, VisualBasic)

 Declarative paradigm
 Describe the problem to be solved rather than the algorithms.

(Prolog, Verilog, VHDL, Lex/Yacc, AMPL, SQL, HTML, latex)

 Functional paradigm
 A composition of functions (in math sense) that accept inputs

and produce outputs. (LISP, Mathematica)

Imperative paradigm
 High level languages that simplify the machine languages
 Programmers need to describe the procedures (how to do)

P i i i i Programming primitives
 Declarative statements: define variable/function names
 Imperative statements: assignment, if-then-else, for-loop,…
 Comments: explanation of statements
 Directives: assist compiler/interpreter for code generation

#include <stdio.h>
/* cntrl d terminates */
int main(int argc, char *argv[]) {

int c;
while((c = getchar()) != EOF) {

putchar(c);
}

}

2010/11/22

2

Object-orient paradigm
 Object: data abstraction+procedures to process the data
 Three important concepts in OOP

U i h i l b h d Use inheritance to relate objects achieve code reuse.
 Use polymorphism to describe variation allow dynamic

binding.
 Use encapsulation to hide information. allow each object

be modified independently.

 In OOP, you can concentrate on one object at a time.
 Very good for developing large systems, such as window

system, network protocol, etc.

Case study: window system
 How to create so many different types of windows (easily)?

Specification

 All windows have some basic properties
 Location, size, resizable, shown/hidden

 All the windows need some basic functions
 Be able to sense the mouse movement/clicks, …
 Be able to be created, destroyed, shown, hidden, …

 Different types of windows behave differently for input
 Button: when mouse clicks, it shows sunken figure
 M it h li k it b Menu item: when mouse clicks, it pops a submenu
 …

 Windows have interaction with each others
 Ex: The child window needs be closed with its parent window.

Using imperative programming
 Method 1: define structs for different windows and write

functions for them
 Most functions will be similar Most functions will be similar
 When changing one property, you need to change all structs

 Method 2: define a big struct that contains everything and
write functions for it.
 Inefficient: the functions will be full of if-then-else statements
 Very difficult to debug and to maintain.y g

 DON’T do either of them. We will discuss more in the
software engineering.

2010/11/22

3

Declarative paradigm
 A programming paradigm that expresses the problem to

be solved rather than the algorithms.
 Imperative languages need to describe algorithms explicitly. Imperative languages need to describe algorithms explicitly.
 Uses backend engine to “solve” problems.
 It is usually domain specific.

 Prolog, HTML, Verilog, VHDL, Lex/Yacc, AMPL, SQL
 Many languages hybrid declarative and imperative paradigms.

Case study: HTML
 Hyper Text Markup Language: describes the display and

format of text, graphics, hyperlink to other html files…

Functional paradigm
 Computation=evaluation of math functions.
 The output value of a “function” depends only on the

arguments that are input to the functionarguments that are input to the function

 It avoids state and mutable data.
 Imperative programming emphasizes changes states.
 We will see an example for their differences.

 It uses recursion instead of iteration (loop)

Case study: Lisp
 The first functional programming language
 Syntax

A b l b Atom: symbol or number
 List: consists of 0 or

more expression
 Ex: (42 69 613)
 The first atom in the list is an “operator”
 Ex: (+ (* 3 (+ 1 (- 4 2 (+ 3 4))))) outputs ?

 R i Recursion:
 compute n! (defun factorial (n)

(if (<= n 1)
1
(* n (factorial (- n 1)))))

2010/11/22

4

List evaluation
 Ex: (+ 1 2 3 (* 4 5) 6)
Step 1. (+ 1 2 3 X 6)

evaluates the list first
Step 7. the operator is *,
multiply all atoms X = (* 4 5)

Step 2. the operation is +,
add all atoms

Step 3. found 1, integer
Step 4. found 2, integer

f d

multiply all atoms
Step 8. found 4, integer
Step 9. found 5, integer
Step 10. end of list, evaluate
4*5=20

Step 11 found 6 integerStep 5. found 3, integer
Step 6. found (* 4 5), list.

Step 11. found 6, integer
Step 12. end of list, evaluate
1+2+3+20+6=32

