
2010/11/22

1

Programming language

Evolution of programming languages

 Why do people need/invent so many different
programming languages?
 Isn’t C good enough?

Outline
 Imperative paradigm
 A sequence of commands that manipulate data to produce the

desired results (C JavaScript Fortran Matlab)desired results. (C, JavaScript, Fortran, Matlab)

 Object-oriented paradigm
 A collection of objects that can perform actions and interact

with other objects. (C++, Java, C#, VisualBasic)

 Declarative paradigm
 Describe the problem to be solved rather than the algorithms.

(Prolog, Verilog, VHDL, Lex/Yacc, AMPL, SQL, HTML, latex)

 Functional paradigm
 A composition of functions (in math sense) that accept inputs

and produce outputs. (LISP, Mathematica)

Imperative paradigm
 High level languages that simplify the machine languages
 Programmers need to describe the procedures (how to do)

P i i i i Programming primitives
 Declarative statements: define variable/function names
 Imperative statements: assignment, if-then-else, for-loop,…
 Comments: explanation of statements
 Directives: assist compiler/interpreter for code generation

#include <stdio.h>
/* cntrl d terminates */
int main(int argc, char *argv[]) {

int c;
while((c = getchar()) != EOF) {

putchar(c);
}

}

2010/11/22

2

Object-orient paradigm
 Object: data abstraction+procedures to process the data
 Three important concepts in OOP

U i h i l b  h d  Use inheritance to relate objects achieve code reuse.
 Use polymorphism to describe variation  allow dynamic

binding.
 Use encapsulation to hide information.  allow each object

be modified independently.

 In OOP, you can concentrate on one object at a time.
 Very good for developing large systems, such as window

system, network protocol, etc.

Case study: window system
 How to create so many different types of windows (easily)?

Specification

 All windows have some basic properties
 Location, size, resizable, shown/hidden

 All the windows need some basic functions
 Be able to sense the mouse movement/clicks, …
 Be able to be created, destroyed, shown, hidden, …

 Different types of windows behave differently for input
 Button: when mouse clicks, it shows sunken figure
 M it h li k it b Menu item: when mouse clicks, it pops a submenu
 …

 Windows have interaction with each others
 Ex: The child window needs be closed with its parent window.

Using imperative programming
 Method 1: define structs for different windows and write

functions for them
 Most functions will be similar Most functions will be similar
 When changing one property, you need to change all structs

 Method 2: define a big struct that contains everything and
write functions for it.
 Inefficient: the functions will be full of if-then-else statements
 Very difficult to debug and to maintain.y g

 DON’T do either of them. We will discuss more in the
software engineering.

2010/11/22

3

Declarative paradigm
 A programming paradigm that expresses the problem to

be solved rather than the algorithms.
 Imperative languages need to describe algorithms explicitly. Imperative languages need to describe algorithms explicitly.
 Uses backend engine to “solve” problems.
 It is usually domain specific.

 Prolog, HTML, Verilog, VHDL, Lex/Yacc, AMPL, SQL
 Many languages hybrid declarative and imperative paradigms.

Case study: HTML
 Hyper Text Markup Language: describes the display and

format of text, graphics, hyperlink to other html files…

Functional paradigm
 Computation=evaluation of math functions.
 The output value of a “function” depends only on the

arguments that are input to the functionarguments that are input to the function

 It avoids state and mutable data.
 Imperative programming emphasizes changes states.
 We will see an example for their differences.

 It uses recursion instead of iteration (loop)

Case study: Lisp
 The first functional programming language
 Syntax

A b l b Atom: symbol or number
 List: consists of 0 or

more expression
 Ex: (42 69 613)
 The first atom in the list is an “operator”
 Ex: (+ (* 3 (+ 1 (- 4 2 (+ 3 4))))) outputs ?

 R i Recursion:
 compute n! (defun factorial (n)

(if (<= n 1)
1
(* n (factorial (- n 1)))))

2010/11/22

4

List evaluation
 Ex: (+ 1 2 3 (* 4 5) 6)
Step 1. (+ 1 2 3 X 6)

evaluates the list first
Step 7. the operator is *,
multiply all atoms X = (* 4 5)

Step 2. the operation is +,
add all atoms

Step 3. found 1, integer
Step 4. found 2, integer

f d

multiply all atoms
Step 8. found 4, integer
Step 9. found 5, integer
Step 10. end of list, evaluate
4*5=20

Step 11 found 6 integerStep 5. found 3, integer
Step 6. found (* 4 5), list.

Step 11. found 6, integer
Step 12. end of list, evaluate
1+2+3+20+6=32

