
2010/12/27

1

Language translation

Language translation
 How to translate a C program to machine code?
 How to know ‘l23’ is a variable or a number?
 H t kn ‘/* It’s a c mment */’ is a c mment? How to know ‘/* It’s a comment */’ is a comment?
 How to know the parenthesis ‘(5*(((1+2)*3)+4))*6’ is balanced?
 How to know the execution order of ‘if(a=++i == 3)’?

 Two types of translations
x = y + z;
w = x + z;

Source code

C il d dL d 1 0 00004

Interpreted code

L d 1 0 00000

Load r1, 0x00004
Load r2, 0x00008
Addi r1, r2, r3
Addi r2, r3, r4
Store r4, 0x00000

Compiled codeLoad r1, 0x00004
Load r2, 0x00008
Addi r1, r2, r3
Store r3, 0x00000

Load r1, 0x00000
Load r2, 0x00008
Addi r1, r2, r3
Store r3, 0x0000D

Memory I/O (Load, Store) is much slower than computation.

Language implementations
 Interpreter: interprets and executes a program statement

by statement
 Perl Matlab JavaScript BASIC HTML  Perl, Matlab, JavaScript, BASIC, HTML …

 Compiler: translates high level program primitives into
machine codes.
 C, C++, Fortran, Verilog…

 The translation process

Lexical analyzer
 Breakdown a program into a list of tokens

a = b + 32;
Token Type

 Ex: definition of variables
letter(letter|digit)*

a b + 32; a Variable
= Assignment operator
b Variable
+ Addition operator
32 Integer
; End of statement

OR Repeat

 a1234g5678t0000 is a variable
 0abcdefg3 is not a variable

p

2010/12/27

2

Regular expression and
finite state machine (FSM)
 letter(letter|digit)* is a regular expression (正規表示法)
 Finite state machine (FSM) is a “machine” to recognize a

l iregular expression
 Ex: FSM for letter(letter|digit)*

start accept

Symbols other

letter

Symbols other than

letter or digit

 Try ‘a123’ , ‘a.123’, ’0a123’

reject

than letters letters or digits

Some notations in a regular expression
Char Behavior Example

* Matches the preceding character
or expression zero or more times

zo* matches "z" and
"zoo"or expression zero or more times. zoo .

+ Matches the preceding character
or expression one or more times.

zo+ matches "zo" and
"zoo", but not "z".

? Matches the preceding character
or expression zero or one time.

zo? matches "z" and
"zo", but not "zoo".

() Marks the start and end of an (0|1)? matches "0", "1",
expression. or ""

| Indicates a choice between two or
more items.

z|food matches "z" or
"food". (z|f)ood matches
"zood" or "food".

From http://msdn.microsoft.com/en-us/library/ae5bf541.aspx

Example: integer
 Description:
 It may start with a negative sign: –
 It has at least one digit: 0 1 2 3 4 5 6 7 8 9 It has at least one digit: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

 Regular expression for a floating point number
 –?(0|1|2|3|4|5|6|7|8|9)+

 The corresponding finite state machine

S1
– digit

start accept

reject

digit

Other than a digit

digit

Parser
 Group tokens into meaningful structures
 “meaningful” is defined by the grammatical rules of the

programming languageprogramming language.
 It can be hard even for human

 Three representations
 Grammar: the rules to define the syntax
 Syntax diagram: flow chart for a grammar

The man the horse that won the race threw was not hurt.

 Parse tree (output of parser): the hierarchical structure of
tokens

2010/12/27

3

An example x+yz
 Syntax diagram for

algebraic expression
• Parse tree for x+yz

Another example: if-then-else
 Syntax diagram of if-then-else

 Two parse trees for “if B1 then if B2 then S1 else S2”

Infix, prefix, postfix notation
 Infix notation:

(1 x 2) - 3 + 4 x 5
= 2 3 + 4 x 5

+

 Postfix notation

 P fi t ti

= 2 - 3 + 4 x 5
= 2 - 3 + 20 = -1 + 20 = 19

1 2 x 3 - 4 5 x +
= 2 3 - 4 5 x +
= -1 4 5 x + = -1 20 + = 19

1 2

x 3

－

4 5

x

 Prefix notation

+ - x 1 2 3 x 4 5
= + - 2 3 x 4 5
= + -1 x 4 5 = + -1 20 = 19

From infix to postfix
 Using a stack
 Checking the current token and the stack[top]
I t St k A ti

(a+b) (c+d)*
Input Stack Action

Num X Output Num

+- If top=‘*/’
else

Pop and output ‘*’ ‘/’
Push ‘+’ or ‘-’

/ Push ‘’ or ‘/’

(X Push ‘(‘

) If top≠‘)’ Pop ■ and output ■

 Ex: (a+b)*(c+d)

) p) p p

if top=‘)’ Pop ‘)’, and cancel them

Empt
y

Not
empty

Pop and output
everything in stack Try (1) a + b * c

(2) a * b + c

