
Data structure

Data abstraction

 Main memory is organized as a sequence of addressable

cells, but the data we want to model is usually not.

 Good data structures help the design of efficient

algorithms

Example: insertion sort

 Suppose the data is coming one by one. You do not have

entire dataset in the beginning. But you need to maintain

a sorted list of received data.

 Algorithm:

 Let „sorted‟ be the list containing sorted data,

N be the size of sorted, and

x be the incoming data.

 If x>sorted[N]

j = N+1

else

Find j such that sorted[j-1]<x<=sorted[j]

Insert x to sorted[j]

When describing an

algorithm, you need

to specify what data

structure is used

If “sorted” is a linked list

 A list in which each entries are linked by pointers

 Head pointer: Pointer to the first entry in a list

 NIL pointer: A value indicating the end of a list

 Operation

 Insertion

 Deletion

Head

3 12 15 23 NIL

Head

3 12 15 23 NIL

13

Head

3 12 15 23 NIL

Constant time

Constant time

Implement linked list by arrays

12 3 15 2 13

4 0 -1 1 2 -1 -1 -1 -1 -1

data

next

0 1 2 3 4 5 6 7 8 9

Number_of_data = 5

Head = 3

Head

2 3 12 15 NIL

13

Summary

 Array

 Sorted data can be searched by binary search in O(logN) time

 Insertion/deletion takes O(N) time for data movement

 The size is fixed.

 Linked list

 Sorted data need be searched in O(N) time

 Insertion/deletion takes O(1) time

 The size is flexible.

 For the sorting problem

 Better algorithms that use data structure, like tree or heap, can

achieve O(NlogN) time for sorting.

More in the course algorithm(演算法) and data structure(資料結構)

Stack

 A list in which entries are inserted/deleted only at head

 Top: The head of stack

 Bottom or base: The tail of stack

 Push: To insert an entry at the top

 Pop: To delete the entry at the top

 LIFO: Last-in-first-out

bottom

top

Example: mouse maze

 The order of trial is

RIGHT, LEFT, DOWN,

and UP

(0,1)(1,1)(2,1)

(1,2)(1,3)(1,4)(1,5)(2,5)(2,6)(2,7)(1,7)

(3,1)(4,1)

(3,2)(3,3)

(5,1)(6,1)(7,1)(7,2)(7,3)(7,4)(7,5)(6,5)(5,5)(4,5)

(5,4)(5,3)

(4,6)(4,7)(5,7)(6,7)(7,7)(8,7)

Example: Eight Queens Problem

 To place eight chess queens on an 8×8 chessboard so

that none of them can capture any other using the

standard chess queen's moves.

 proposed in 1848 by the chess player Max Bezzel

1

2

3

4

5

6

7

8

A B C D E F G H

A5

B1

D7

G2

B7

D1

B8

H7

Queue

 A list in which entries are removed at the head and are

inserted at the tail.

 Enqueue: insert an entry at the tail

 Dequeue: remove an entry at the head

 FIFO: First-in-first-out

 Example:

HeadTail

Example: Josephus problem

Flavius Josephus is a Jewish historian living in the 1st

century. According to his account, he and his 40

comrade soldiers were trapped in a cave, surrounded

by Romans. They chose suicide over capture and

decided that they would form a circle and start killing

themselves using a step of three. As Josephus did not

want to die, he was able to find the safe place, and

stayed alive with his comrade, later joining the Romans

who captured them.

Can you find the safe place?

1 2 3
4

5
6

7

8

9

10

11

12

13

14
15

16
1718192021222324

25
26

27
28

29

30

31

32

33

34

35
36

37
38 39 40 41

Safe place

Examples of using queues

 Ex1: the job queues

in operating system

 Ex2: simulation of the

Josephus problem

 Dequeue 1

 Enqueue 1

 Dequeue 2

 Dequeue 3

 Enqueue 3 6 5 4 3 2 1

1

2

34

5

6

Queue implementation

 A list + 2 pointers (head+tail)

 Enqueue A, B, C

 Dequeue A, enqueue D

 Dequeue B, enqueue E

 If using a static list, the

queue crawls through

memory as entities are

inserted and removed.

Head pointer

Tail pointer
A

B

C

D

E

Circular queue

 A technique that uses a fixed region of memory space to
implement queue.

tail

head A

B

C

D

Enqueue A, B, C

Dequeue A, Enqueue D

Dequeue B, Enqueue E

E

What is a tree?

 A collection of nodes that are linked in a hierarchical

structure, in which every node is linked by one parent,

except the root.

 Node: An entry in a tree

 Parent: The node immediately

above a specified node

 Root: The node at the top

 Terminal or leaf node:

A node at the bottom

Hierarchical relations

 Parent: The node immediately above a node
 The parent of F is B

 Child: A node immediately below a node
 The children of C are G and H.

 Ancestor: Parent, parent of parent, etc.
 The ancestor of K are F, B, and A.

 Descendent: Child, child of child, etc.
 The descendent of B are E, F, K, and L.

 Siblings: Nodes sharing a common
parent

 The siblings of C are B and D.

A

B C D

E F G H I J

K L

Depth and height

 Textbook‟s definition

 The depth of a tree is the longest

path from the root to a leaf node

 The length of a path is the

number of nodes on the path

 Ex: the depth of the tree is 4

 Conventional definition
 Use the word “height” instead of depth

 The length of a path is the number of links on the path

 Ex: The height of the tree is 3 (= 4 – 1)

A

B C D

E F G H I J

K L

What are trees used for?

 Example: game tree for mouse maze

 Example: game tree for eight queens C4, E3, F6

A5 A8

B1 B7 B8 B1

D7

G2

D1 D1 D7

G2

H7

G2

D7

 A tree in which each parent has at most two children

Left subtree Right subtree

Binary tree

Left child Right child

Recursive structure

 Tree is a recursive structure

 The subtrees of a tree are trees

 The recursive algorithms for

a binary tree may look like this

 It is a depth first, in order algorithm for tree

procedure some_operation (root)

if (root is not NULL) then

(call some_operation(root.left_child)

do some operations on root

call some_operation(root.right_child))

Depth first search (DFS)

 Both mouse maze and eight queens problem use DFS

 Preorder

 Root. left subtree.right subtree.

 F, B, A, D, C, E, G, I, H

 Inorder

 Left subtree. root. right subtree.

 A, B, C, D, E, F, G, H, I

 Postorder

 Left subtree.right subtree.root.

 A, C, E, D, B, H, I, G, F

Tree figure from Wikipedia: http://en.wikipedia.org/wiki/Tree_traversal

http://en.wikipedia.org/wiki/Tree_traversal

DFS uses stack

 DFS and pre-order

 Inorder and postorder can be done similarly

push F

pop F

push G B

pop B

push D A

pop A D

push E C

pop C E G

push I

pop I

push H

pop H

F, B, A, D, C, E, G, I, H

Breadth first search (BFS)

 BFS visits every node on a level before

going to a lower level

 F, B, G, A, D, I, C, E, H

 Uses queue to implement the BFS

Enqueue F

Dequeue F

Enqueue B G

Dequeue B

Enqueue A D

Dequeu G

Enqueue I

Dequeue A

Dequeue D

Enqueue C E

Dequeue I

Enqueue H

Dequeue H

Storing a binary tree using pointers

 Each node

Use customized

data type to

define

Simulate pointers using array

Data C F A D B E

Left child -1 -1 4 -1 3 -1

Right child 1 -1 0 -1 5 -1

Root = 2

0 1 2 3 4 5

Storing a binary tree in a list

 This is called a heap in some applications.

Advantages of using heap

 Easily to find the index of parent & children

 Parent(B) = [index of B] / 2 = 1

 LeftChild(B) = [index of B]*2 = 4

 RightChild(B) = [index of B]*2 + 1= 5

Problems of heap

 Heap is inefficient for storing the binary tree that is

sparse and unbalanced

 Sparse: most node has one or zero child

 Unbalanced: the right subtree is much larger than the left

subtree, or

vice versa

