
2010/12/6

1

Algorithm

Review what we had learned before
 Algorithm: A finite sequence of instructions to describe a

systematical method to solve a problem
 W t th ‘d i l t bi ’ l ith b  We can represent the ‘decimal-to-binary’ algorithm by a

flow chart
 It has starting point [step 1]
 Step 2 is a condition statement
 Step1+step 2 is a loop statement
 The problem size is shrunk

n/2

start

Quotient

No, let
n=quotient

p
after each loop

 The loop can be terminated
[when quotient ==0]

==0?

Arrange the
reminders to get

the answer

Yes

十進位轉二進位演算法 Three algorithms
 Problem: converting nd to mb.
 Algorithm 1: as mentioned in the last class
 Algorithm 2:

n/2

start

Quotient
==0?

No, let
n=quotient

 Algorithm 2:
 mb = 0
 For i = 1 to nd

 mb = mb + 1
 Algorithm 3:
 mb = 0

What is the cost of mb = mb+1?

==0?

Arrange the
reminders to get

the answer

Yes

 While nd is not 0
 Find 2k nd<2k+1

 mb = mb + 2k

 nd = nd – 2k

What is the cost of finding k?
The cost of mb+2k is just putting 1
at the kth position of mb

What is the cost of nd = nd– 2k?

Recursive algorithm
 The first algorithm is a recursive algorithm
 To answer what the binary of 13d is, you

need to answer what the binary of 6 is

Binary(13)

Binary(6) 1

need to answer what the binary of 6d is.
 To answer what the binary of 6d is, you

need to answer what the binary of 3d is.
 To answer what the binary of 3d is, you

need to answer what the binary of 1d is.

 Recursive algorithm
T b bl l ll b bl

Binary(3)

Binary(1)

0

1

1

 Turn a big problem into one or several smaller subproblems
 Each subproblem is identical to the original one except size

 Thus, they can be solved by the same method.

 Need a termination condition.

2010/12/6

2

Algorithm
 An effective method for solving a problem using a finite

sequence of instructions.
 It need be able to solve the problem (correctness) It need be able to solve the problem. (correctness)
 It can be represented by a finite number of instructions.

 Each instruction must be achievable by computers
 Assignment, if-then-else statement, loop statement,

 The more effective, the better algorithm is.
 How to measure the “efficiency”?

O l Outline
 Sorting problem

 Correctness, efficiency, recursion

Sorting problem
 Given N numbers, arrange them in the ascending order.
 Algorithm: (in ascending order)

F d h ll l f h l Find the smallest element from the list
 Recursively sort the rest

 In the way that computer can do it
void SelectionSort(int n, int a[]){

if (n==1) return;
int index = FindSmallest(start, end, a[]);int index FindSmallest(start, end, a[]);
Swap(a[0], a[index]);
SelectionSort(n-1, a[1:n-1]);

}

How to prove the correctness?
 Using Induction
 For n=1, the smallest number is the only number. Therefore, it

is sortedis sorted.
 Assume for n=k, the SelectionSort can sort k numbers

correctly.
 For n=k+1, the SelectionSort first finds the smallest element

and moves it to a[0], and then sorts the rest k elements.
 Since the SelectionSort can sort k elements correctly, and the

a[0] is smaller than or equal to other k elements the output a[0] is smaller than or equal to other k elements, the output
array contains the sorted elements in the ascending order.

 By induction, the SelectionSort is correct.

How efficient is this algorithm?
 How many data comparisons is needed?
 N(N-1)/2 inside the FindSmallest
 N f r checkin N==1 N for checking N==1

 How many data movements is needed?
 N(N-1) for the FindSmallest
 N-1 for Swap

 How many times SelectionSort is called?
 N-1 times N 1 times

 If N is doubled, what will 1 and 2 be changed?
 They will be quadrupled (4X)
 Number of calls for SelectionSort will be doubled.

2010/12/6

3

Big-theta notation
 Which one is better? 3000*N+9999 or 0.1*N2

 We say f(x)= Θ (g(x)) if  M1, M2, k >0 and for all x>k,
M () ≦ f() ≦ M ()M1g(x) ≦ f(x) ≦ M2g(x)

 f(n) = 3000*n+9999 = Θ (n)
 f(n) = 0.1*n2 = (n2)

Running time and time complexity
 Suppose your CPU has clock rate 3G HZ (3x109) and

each operation only takes 1 clock cycle to finish.

Time
complexity

N=50 N=51 N=100 N=106 N=1012

Θ(1) 100 s 100 s 100 s 100 s 100 s

Θ(log2N) 1.88*10-9 s 1.89*10-9 s 2.21*10-9 s 2.21*10-9 s 1.3*10-8 s

Θ(N1/2) 2.36*10-9 s 2.38*10-9 s 3.33*10-9 s 3.33*10-7 s 3.33*10-5 s

Θ(N) 1.666*10-8 s 1.7*10-8 s 3.33*10-8 s 3.33*10-4 s 5.56 minutes

Θ(N*log N) 9 4*10-8 s 9 6*10-8 s 2 21*10-7 s 6 64*10-3 s 110 minutesΘ(N*log2N) 9.4*10-8 s 9.6*10-8 s 2.21*10-7 s 6.64*10-3 s 110 minutes

Θ(N2) 8.33*10-7 s 8.67*10-7 s 3.33*10-6 s 5.56minutes 107 year

Θ(2N) 4.34 days 8.69 days ~1013 years

Θ(N!) ~1047 years ~1049 years ~10140 years

Can we do better?
 If N is halved, what will the time complexity be?
 Assume the number of operations for the SelectionSort is

T(N) = 3N(N 1) + 3N = 3N2T(N) = 3N(N-1) + 3N = 3N2

 Sorting two N/2 numbers takes T(N/2)+T(N/2)=3/2N2

 How to merge two sorted sequences?

1 4 5 9 3 7 8 10

Af h

How many comparisons and data
data movement are required?

After each comparison, an
element will be moved to the
new array.

N comparison+data movements to merge two sorted arrays

Two new algorithms
 We can do the sort as follows

1. Divide the N elements into two N/2 arrays
2 Use Selecti nS rt t s rt t N/2 arra s

…

2. Use SelectionSort to sort two N/2 arrays
3. Merge two sorted arrays

 The time complexity for the above algorithm is 3/2N2+N
 Better than the original one 3N2.

 What if we divide the data to four N/4 arrays?
 SelectionSort N/4 data takes 3/16N2

… …

…

 SelectionSort N/4 data takes /16N
 There are four N/4 arrays to sort  3/4N2

 When merging, we merge two N/4 arrays twice and then
merge two N/2 arrays  2N

 The total time of the algorithm is 3/4N2 +2N

… …

… … … …

2010/12/6

4

MergeSort
 Although both algorithm improves the original

SelectionSort, the time complexity of them is still Θ(N2)
 When N is doubled the time for them is quadrupled When N is doubled, the time for them is quadrupled.

 What if we apply the splitting and merging recursively?
1. Divide the N elements into two N/2 arrays
2. Use MergeSort to sort two N/2 arrays
3. Merge two sorted arrays

 What is the time complexity of MergeSort? What is the time complexity of MergeSort?
 Let T(N) be the time complexity of MergeSort

T(N) = 2T(N/2) + 2N
 Let T(1) = 1. What is T(N)?

Pictorial view of T(N)
 We can arrange the MergeSorts into layers
 The MergeSorts in each layer have the same number of data
 There are 2k Mer eS rts in La er k There are 2k MergeSorts in Layer k.
 The number of layers is
 Merging 2k segments into 2k-1 segments takes
 The time complexity of MergeSort is N*log2N
 When N is doubled,

log22N = log2N+1.
N Layer 0

N/2 N/2

N/4 N/4 N/4 N/4

1 1 1 1 1 1 1 1 1 1…

Layer 1

Layer 2

Layer ?

… … … … …

