Algorithm

Review what we had learned before

» Algorithm: A finite sequence of instructions to describe a
systematical method to solve a problem

» We can represent the ‘decimal-to-binary’ algorithm by a

flow chart
start
» It has starting point [step |]

No, let

» Step 2 is a condition statement
» Stepl+step 2 is a loop statement n=quotient

2
» The problem size is shrunk Quotient .

==0?
after each loop o
Yes

Arrange the

» The loop can be terminated
[when quotient ==0]

reminders to get
the answer

L= - 2 =7 & ;2 Three algorithms

» Problem: converting n, to m,.
» Algorithm |:as mentioned in the last class
» Algorithm 2:

» my=0 Arrange the
» Fori=1tony R
my, =my + |)
» Algorithm 3: What is the cost of m, = m,+1?
»m,=0

» While ngis not 0
Find 2k <n <2*'—— What is the cost of finding k?
m, =m, + 2~ The cost of m,+2¥is just putting |
ng=ng— 2% at the kth position of m,

,, What is the cost of ng=n—2<

>

, fet

iotient

Recursive algorithm

» The first algorithm is a recursive algorithm

» To answer what the binary of |3, is, you
need to answer what the binary of 6 is.

Binary(13)

Binary(6)

» To answer what the binary of 6, is, you
need to answer what the binary of 3 is.

Binary(3)

» To answer what the binary of 3, is, you
need to answer what the binary of | is.

Binary(l)

» Recursive algorithm

» Turn a big problem into one or several smaller subproblems

» Each subproblem is identical to the original one except size
Thus, they can be solved by the same method.

» Need a termination condition.

2010/12/6

2010/12/6

Algorithm Sorting problem

» An effective method for solving a problem using a finite » Given N numbers, arrange them in the ascending order.
sequence of instructions. » Algorithm: (in ascending order)
» It need be able to solve the problem. (correctness) » Find the smallest element from the list
» It can be represented by a finite number of instructions. » Recursively sort the rest

Each instruction must be achievable by computers » In the way that computer can do it

Assignment, if-then-else statement, loop statement,) . . .
void SelectionSort(int n, int a[]){

» The more effective, the better algorithm is.

. e -) if (n==1) return;
How to measure the “efficiency”? () ’

» Outline
» Sorting problem

int index = FindSmallest(start, end, a[]);
Swap(a[0], a[index]);

SelectionSort(n-1,a[l:n-11);
Correctness, efficiency, recursion ([D

}
> >
How to prove the correctness? How efficient is this algorithm?
» Using Induction » How many data comparisons is needed?
» For n=1, the smallest number is the only number. Therefore, it » N(N-1)/2 inside the FindSmallest
is sorted. » N for checking N==
» AssumeI for n=k, the SelectionSort can sort k numbers » How many data movements is needed?
correctly. » N(N-1) for the FindSmallest
» For n=k+1, the SelectionSort first finds the smallest element
» N-I for Swap

and moves it to a[0], and then sorts the rest k elements.

.)
» Since the SelectionSort can sort k elements correctly, and the » How many times SelectionSort is called?

a[0] is smaller than or equal to other k elements, the output » N-I times
array contains the sorted elements in the ascending order. » If N is doubled, what will | and 2 be changed?
» By induction, the SelectionSort is correct. » They will be quadrupled (4X)

» Number of calls for SelectionSort will be doubled.

Big-theta notation

» Which one is better? 3000%*N+9999 or 0.1*N?2
» We say f(x)= 0 (g(x)) if 3 M|, M,, k >0 and for all x>k,
Mig(x) = f(x) = Myg(x)

» f(n) =3000%n+9999 = O (n)
» f(n) = 0.1*n2 = (n?)

Running time and time complexity

» Suppose your CPU has clock rate 3G HZ (3x10°) and
each operation only takes | clock cycle to finish.

Time
complexity

o(l) 100 s 100 s 100 s 100 s 100 s
O(log,N) 1.88%10%s 1.89%10°s 221%10%s 22[*10%s 1.3%(08s
O(N'"2) 2.36%10%s 2.38%10°s 3.33%10°s 3.33%|07s 3.33*%105s
O(N) 1.666*%108s |.7%108s 3.33%108s 3.33*10*s 5.56 minutes

O(N*log,N) 9.4*10®s 9.6%108s 221*%107s 6.64%103s 110 minutes
O(N?) 8.33*107s 8.67%107s 3.33*|0¢s 5.56minutes 107 year
o2N) 4.34 days 8.69 days ~10'3 years
O(N!) ~10* years ~10%* years ~10'% years

Can we do better?

» If N is halved, what will the time complexity be?
» Assume the number of operations for the SelectionSort is
T(N) = 3N(N-1) + 3N = 3N?
» Sorting two N/2 numbers takes T(N/2)+T(N/2)=3/2N?
» How to merge two sorted sequences?

any comparisons and data
m ovement are required?
After each comparison, an

element will be moved to the
new array.

N comparison+data movements to merge two sorted arrays

Two new algorithms

» We can do the sort as follows
I. Divide the N elements into two N/2 arrays
2. Use SelectionSort to sort two N/2 arrays
3. Merge two sorted arrays

» The time complexity for the above algorithm is 3/2N2+N
» Better than the original one 3NZ2.

» What if we divide the data to four N/4 arrays!?

» SelectionSort N/4 data takes 3/,,N? | |

» There are four N/4 arrays to sort =» 3/4N?

» When merging, we merge two N/4 arrays twice andthen
merge two N/2 arrays = 2N
» The total time of the algorithm is 3/4N?+2N

2010/12/6

MergeSort

» Although both algorithm improves the original
SelectionSort, the time complexity of them is still ©(N?)
» When N is doubled, the time for them is quadrupled.
» What if we apply the splitting and merging recursively?
I. Divide the N elements into two N/2 arrays
2. Use MergeSort to sort two N/2 arrays
3. Merge two sorted arrays
» What is the time complexity of MergeSort?
» LetT(N) be the time complexity of MergeSort
T(N) = 2T(N/2) + 2N
» LetT(l) = I. What is T(N)?

Pictorial view of T(N)

» We can arrange the MergeSorts into layers
» The MergeSorts in each layer have the same number of data
» There are 2% MergeSorts in Layer k.
» The number of layers is
» Merging 2 segments into 2! segments takes
» The time complexity of MergeSort is N*log,N

» When N is doubled,
log,2N = log,N+1.

2010/12/6

