

Review what we had learned before
－Algorithm：A finite sequence of instructions to describe a systematical method to solve a problem
－We can represent the＇decimal－to－binary＇algorithm by a flow chart
，It has starting point［step I］
－Step 2 is a condition statement
－Step I＋step 2 is a loop statement
－The problem size is shrunk after each loop
－The loop can be terminated ［when quotient $==0$ ］

十進位轉二進位演算法 Three algorithms

－Problem：converting n_{d} to m_{b} ．
－Algorithm I：as mentioned in the last class
－Algorithm 2 ：
－ $\mathrm{m}_{\mathrm{b}}=0$
－For $i=I$ to n_{d}

－$m_{b}=m_{b}+1$
What is the cost of $m_{b}=m_{b}+1$ ？
－Algorithm 3：
－$m_{b}=0$
－While n_{d} is not 0
－Find $2^{k} \leq n_{d}<2^{k+1} \longrightarrow$ What is the cost of finding k ？
－$m_{b}=m_{b}+2^{k} \quad$ The cost of $m_{b}+2^{k}$ is just putting I
，$n_{d}=n_{d}-2^{k} \quad$ at the kth position of m_{b}
－

Algorithm

- An effective method for solving a problem using a finite sequence of instructions.
- It need be able to solve the problem. (correctness)
- It can be represented by a finite number of instructions.
- Each instruction must be achievable by computers
- Assignment, if-then-else statement, loop statement,
- The more effective, the better algorithm is.
, How to measure the "efficiency"?
- Outline
- Sorting problem
- Correctness, efficiency, recursion

Sorting problem

- Given N numbers, arrange them in the ascending order.
- Algorithm: (in ascending order)
- Find the smallest element from the list
- Recursively sort the rest
- In the way that computer can do it
void SelectionSort(int n , int a[])\{
if ($n==1$) return;
int index = FindSmallest(start, end, a[]);
Swap(a[0], a[index]);
SelectionSort(n-I, a[I:n-I]);
\}

How to prove the correctness?

How efficient is this algorithm?

- Using Induction
- For $\mathrm{n}=\mathrm{I}$, the smallest number is the only number. Therefore, it is sorted.
- Assume for $\mathrm{n}=\mathrm{k}$, the SelectionSort can sort k numbers correctly.
- For $\mathrm{n}=\mathrm{k}+\mathrm{l}$, the SelectionSort first finds the smallest element and moves it to $a[0]$, and then sorts the rest k elements.
- Since the SelectionSort can sort k elements correctly, and the $a[0]$ is smaller than or equal to other k elements, the output array contains the sorted elements in the ascending order.
- By induction, the SelectionSort is correct.
- How many data comparisons is needed?
- $\mathrm{N}(\mathrm{N}-\mathrm{I}) / 2$ inside the FindSmallest
- N for checking $\mathrm{N}==1$
- How many data movements is needed?
- $N(N-I)$ for the FindSmallest
- N-I for Swap
- How many times SelectionSort is called?
- N - I times
- If N is doubled, what will I and 2 be changed?
- They will be quadrupled (4X)
- Number of calls for SelectionSort will be doubled.

Big-theta notation

- Which one is better? $3000 * \mathrm{~N}+9999$ or $0.1 * \mathrm{~N}^{2}$
- We say $f(x)=\Theta(g(x))$ if $\exists M_{1}, M_{2}, k>0$ and for all $x>k$,

$$
M_{1} g(x) \leqq f(x) \leqq M_{2} g(x)
$$

- $f(n)=3000 * n+9999=\theta(n)$
- $f(n)=0.1 * n^{2}=\left(n^{2}\right)$

Running time and time complexity

- Suppose your CPU has clock rate 3G HZ (3×10^{9}) and each operation only takes I clock cycle to finish.

Time complexity	$\mathrm{N}=50$	$\mathrm{~N}=5 \mathrm{I}$	$\mathrm{N}=100$	$\mathrm{~N}=10^{6}$	$\mathrm{~N}=10^{12}$
$\Theta(1)$	100 s				
$\Theta\left(\log _{2} \mathrm{~N}\right)$	$1.88^{*} 10^{-9} \mathrm{~s}$	$1.89^{*} 10^{-9} \mathrm{~s}$	$2.21^{*} 10^{-9} \mathrm{~s}$	$2.21 * 10^{-9} \mathrm{~s}$	$1.3^{*} 10^{-8} \mathrm{~s}$
$\Theta\left(\mathrm{~N}^{12}\right)$	$2.36 * 10^{-9} \mathrm{~s}$	$2.38^{*} 10^{-9} \mathrm{~s}$	$3.33^{*} 10^{-9} \mathrm{~s}$	$3.33^{*} 10^{-7} \mathrm{~s}$	$3.33^{*} 10^{-5} \mathrm{~s}$
$\Theta(\mathrm{~N})$	$1.666^{*} 10^{-8} \mathrm{~s}$	$1.7^{*} 10^{-8} \mathrm{~s}$	$3.33^{*} 10^{-8} \mathrm{~s}$	$3.33^{*} 10^{-4} \mathrm{~s}$	5.56 minutes
$\Theta\left(\mathrm{N} * \log _{2} \mathrm{~N}\right)$	$9.4^{*} 10^{-8} \mathrm{~s}$	$9.6^{*} 10^{-8} \mathrm{~s}$	$2.21^{*} 10^{-7} \mathrm{~s}$	$6.64^{*} 10^{-3} \mathrm{~s}$	110 minutes
$\Theta\left(\mathrm{N}^{2}\right)$	$8.33^{*} 10^{-7} \mathrm{~s}$	$8.67 * 10^{-7} \mathrm{~s}$	$3.33^{*} 10^{-6} \mathrm{~s}$	5.56 minutes	10^{7} year
$\Theta\left(2^{\mathrm{N}}\right)$	4.34 days	8.69 days	$\sim 10^{13}$ years		
$\Theta(\mathrm{N}!)$	$\sim 10^{47}$ years	$\sim 10^{49}$ years	$\sim 10^{140}$ years		

Can we do better?

- If N is halved, what will the time complexity be?
- Assume the number of operations for the SelectionSort is

$$
\mathrm{T}(\mathrm{~N})=3 \mathrm{~N}(\mathrm{~N}-\mathrm{I})+3 \mathrm{~N}=3 \mathrm{~N}^{2}
$$

- Sorting two $N / 2$ numbers takes $T(N / 2)+T(N / 2)=3 / 2 N^{2}$
- How to merge two sorted sequences?
 \uparrow 3 datarmovement are required?

After each comparison, an element will be moved to the new array.
N comparison+data movements to merge two sorted arrays

Two new algorithms

- We can do the sort as follows

1. Divide the N elements into two $\mathrm{N} / 2$ arrays
2. Use SelectionSort to sort two N/2 arrays

- The time complexity for the above algorithm is $3 / 2 \mathrm{~N}^{2}+\mathrm{N}$
- Better than the original one $3 \mathrm{~N}^{2}$.
- What if we divide the data to four N/4 arrays?
- SelectionSort N/4 data takes ${ }^{3 /}{ }_{16} \mathrm{~N}^{2}$
- There are four $\mathrm{N} / 4$ arrays to sort $\rightarrow 3 / 4 \mathrm{~N}^{2}$
- When merging, we merge two N/4 arrays twice and then merge two $\mathrm{N} / 2$ arrays $\rightarrow 2 \mathrm{~N}$
- The total time of the algorithm is $3 / 4 \mathrm{~N}^{2}+2 \mathrm{~N}$

MergeSort

- Although both algorithm improves the original SelectionSort, the time complexity of them is still $\Theta\left(N^{2}\right)$
, When N is doubled, the time for them is quadrupled.
-What if we apply the splitting and merging recursively?

Pictorial view of $\mathrm{T}(\mathrm{N})$

- We can arrange the MergeSorts into layers
- The MergeSorts in each layer have the same number of data
- There are 2^{k} MergeSorts in Layer k .

1. Divide the N elements into two $\mathrm{N} / 2$ arrays

The number of layers is
2. Use MergeSort to sort two N/2 arrays

- Merging 2^{k} segments into 2^{k-1} segments takes

3. Merge two sorted arrays

- What is the time complexity of MergeSort?
- Let $T(N)$ be the time complexity of MergeSort

$$
\mathrm{T}(\mathrm{~N})=2 \mathrm{~T}(\mathrm{~N} / 2)+2 \mathrm{~N}
$$

- Let $T(I)=I$. What is $T(N)$?

