
2010/12/6

1

Algorithm

Review what we had learned before
 Algorithm: A finite sequence of instructions to describe a

systematical method to solve a problem
 W t th ‘d i l t bi ’ l ith b We can represent the ‘decimal-to-binary’ algorithm by a

flow chart
 It has starting point [step 1]
 Step 2 is a condition statement
 Step1+step 2 is a loop statement
 The problem size is shrunk

n/2

start

Quotient

No, let
n=quotient

p
after each loop

 The loop can be terminated
[when quotient ==0]

==0?

Arrange the
reminders to get

the answer

Yes

十進位轉二進位演算法 Three algorithms
 Problem: converting nd to mb.
 Algorithm 1: as mentioned in the last class
 Algorithm 2:

n/2

start

Quotient
==0?

No, let
n=quotient

 Algorithm 2:
 mb = 0
 For i = 1 to nd

 mb = mb + 1
 Algorithm 3:
 mb = 0

What is the cost of mb = mb+1?

==0?

Arrange the
reminders to get

the answer

Yes

 While nd is not 0
 Find 2k nd<2k+1

 mb = mb + 2k

 nd = nd – 2k

What is the cost of finding k?
The cost of mb+2k is just putting 1
at the kth position of mb

What is the cost of nd = nd– 2k?

Recursive algorithm
 The first algorithm is a recursive algorithm
 To answer what the binary of 13d is, you

need to answer what the binary of 6 is

Binary(13)

Binary(6) 1

need to answer what the binary of 6d is.
 To answer what the binary of 6d is, you

need to answer what the binary of 3d is.
 To answer what the binary of 3d is, you

need to answer what the binary of 1d is.

 Recursive algorithm
T b bl l ll b bl

Binary(3)

Binary(1)

0

1

1

 Turn a big problem into one or several smaller subproblems
 Each subproblem is identical to the original one except size

 Thus, they can be solved by the same method.

 Need a termination condition.

2010/12/6

2

Algorithm
 An effective method for solving a problem using a finite

sequence of instructions.
 It need be able to solve the problem (correctness) It need be able to solve the problem. (correctness)
 It can be represented by a finite number of instructions.

 Each instruction must be achievable by computers
 Assignment, if-then-else statement, loop statement,

 The more effective, the better algorithm is.
 How to measure the “efficiency”?

O l Outline
 Sorting problem

 Correctness, efficiency, recursion

Sorting problem
 Given N numbers, arrange them in the ascending order.
 Algorithm: (in ascending order)

F d h ll l f h l Find the smallest element from the list
 Recursively sort the rest

 In the way that computer can do it
void SelectionSort(int n, int a[]){

if (n==1) return;
int index = FindSmallest(start, end, a[]);int index FindSmallest(start, end, a[]);
Swap(a[0], a[index]);
SelectionSort(n-1, a[1:n-1]);

}

How to prove the correctness?
 Using Induction
 For n=1, the smallest number is the only number. Therefore, it

is sortedis sorted.
 Assume for n=k, the SelectionSort can sort k numbers

correctly.
 For n=k+1, the SelectionSort first finds the smallest element

and moves it to a[0], and then sorts the rest k elements.
 Since the SelectionSort can sort k elements correctly, and the

a[0] is smaller than or equal to other k elements the output a[0] is smaller than or equal to other k elements, the output
array contains the sorted elements in the ascending order.

 By induction, the SelectionSort is correct.

How efficient is this algorithm?
 How many data comparisons is needed?
 N(N-1)/2 inside the FindSmallest
 N f r checkin N==1 N for checking N==1

 How many data movements is needed?
 N(N-1) for the FindSmallest
 N-1 for Swap

 How many times SelectionSort is called?
 N-1 times N 1 times

 If N is doubled, what will 1 and 2 be changed?
 They will be quadrupled (4X)
 Number of calls for SelectionSort will be doubled.

2010/12/6

3

Big-theta notation
 Which one is better? 3000*N+9999 or 0.1*N2

 We say f(x)= Θ (g(x)) if M1, M2, k >0 and for all x>k,
M () ≦ f() ≦ M ()M1g(x) ≦ f(x) ≦ M2g(x)

 f(n) = 3000*n+9999 = Θ (n)
 f(n) = 0.1*n2 = (n2)

Running time and time complexity
 Suppose your CPU has clock rate 3G HZ (3x109) and

each operation only takes 1 clock cycle to finish.

Time
complexity

N=50 N=51 N=100 N=106 N=1012

Θ(1) 100 s 100 s 100 s 100 s 100 s

Θ(log2N) 1.88*10-9 s 1.89*10-9 s 2.21*10-9 s 2.21*10-9 s 1.3*10-8 s

Θ(N1/2) 2.36*10-9 s 2.38*10-9 s 3.33*10-9 s 3.33*10-7 s 3.33*10-5 s

Θ(N) 1.666*10-8 s 1.7*10-8 s 3.33*10-8 s 3.33*10-4 s 5.56 minutes

Θ(N*log N) 9 4*10-8 s 9 6*10-8 s 2 21*10-7 s 6 64*10-3 s 110 minutesΘ(N*log2N) 9.4*10-8 s 9.6*10-8 s 2.21*10-7 s 6.64*10-3 s 110 minutes

Θ(N2) 8.33*10-7 s 8.67*10-7 s 3.33*10-6 s 5.56minutes 107 year

Θ(2N) 4.34 days 8.69 days ~1013 years

Θ(N!) ~1047 years ~1049 years ~10140 years

Can we do better?
 If N is halved, what will the time complexity be?
 Assume the number of operations for the SelectionSort is

T(N) = 3N(N 1) + 3N = 3N2T(N) = 3N(N-1) + 3N = 3N2

 Sorting two N/2 numbers takes T(N/2)+T(N/2)=3/2N2

 How to merge two sorted sequences?

1 4 5 9 3 7 8 10

Af h

How many comparisons and data
data movement are required?

After each comparison, an
element will be moved to the
new array.

N comparison+data movements to merge two sorted arrays

Two new algorithms
 We can do the sort as follows

1. Divide the N elements into two N/2 arrays
2 Use Selecti nS rt t s rt t N/2 arra s

…

2. Use SelectionSort to sort two N/2 arrays
3. Merge two sorted arrays

 The time complexity for the above algorithm is 3/2N2+N
 Better than the original one 3N2.

 What if we divide the data to four N/4 arrays?
 SelectionSort N/4 data takes 3/16N2

… …

…

 SelectionSort N/4 data takes /16N
 There are four N/4 arrays to sort 3/4N2

 When merging, we merge two N/4 arrays twice and then
merge two N/2 arrays 2N

 The total time of the algorithm is 3/4N2 +2N

… …

… … … …

2010/12/6

4

MergeSort
 Although both algorithm improves the original

SelectionSort, the time complexity of them is still Θ(N2)
 When N is doubled the time for them is quadrupled When N is doubled, the time for them is quadrupled.

 What if we apply the splitting and merging recursively?
1. Divide the N elements into two N/2 arrays
2. Use MergeSort to sort two N/2 arrays
3. Merge two sorted arrays

 What is the time complexity of MergeSort? What is the time complexity of MergeSort?
 Let T(N) be the time complexity of MergeSort

T(N) = 2T(N/2) + 2N
 Let T(1) = 1. What is T(N)?

Pictorial view of T(N)
 We can arrange the MergeSorts into layers
 The MergeSorts in each layer have the same number of data
 There are 2k Mer eS rts in La er k There are 2k MergeSorts in Layer k.
 The number of layers is
 Merging 2k segments into 2k-1 segments takes
 The time complexity of MergeSort is N*log2N
 When N is doubled,

log22N = log2N+1.
N Layer 0

N/2 N/2

N/4 N/4 N/4 N/4

1 1 1 1 1 1 1 1 1 1…

Layer 1

Layer 2

Layer ?

… … … … …

