
2010/10/6

1

Operating System

Virtualization

The role of OS

� Manage computer resources, such as 
disk, memory, CPU, …, for programs 
(application) to be executed on 
computers

� Provide an interface for users to use 
computers (and application).

Components of an operating system

� For user: shell, privilege control (security)

� GUI (graphical user interface): Windows, Icons, Menus, Pointer

� For data: file manager

� For hardware: 

� Device manager, 

� Memory manager,

� Boot loader

� For software: 

� Where to store: File manger, Registry

� How to execute: scheduler, process manager

Outline

� History

� Virtualization

� Multitasking

� Resource sharing problems 

�Resource protection

�Deadlock 

� Virtual memory



2010/10/6

2

History of Operating System

� 1940s~1950s: programs are ‘stored’ on tapes and 
punched cards. � Need operators to start programs

� The first operating system: use a program to setup and to 
stream programs �batch processing

� Two new needs

� The need for users’ interaction � iterative processing

� The deadline requirement � real-time processing

� 1960s~1970s: multiuser environment

� More than one iterative tasks and real-time tasks need be 
executed on a computer

� Time sharing (multiprogramming), multitasking system

Virtualization

� Virtualization is a technique for hiding the physical 
characteristics of computing resources to simplify the way 
in which other systems, applications, or end users interact 
with those resources. *

� Two examples in OS

� Multitasking

� Virtual memory

* Cited from http://cplus.about.com/od/glossar1/g/virtualization.htm

Program vs. process vs. context

� Program: a set of instructions

� Process: the activity of executing a program
� A program can be run multiple times; each instance/activity is 

called a process

� Context:  a snapshot of the current status of a process

� A process identifier, or PID

� Register values, Program Counter value

� The memory space, I/O, files for the process

� State of the process.

� Ready: ready for execution.

� Waiting: waiting for some I/O.

� Complete: finished process.

Multiprogramming

� Each process is executed a fixed period of time (timeslice)

� After a timeslice, the computer (CPU, memory…) is 
switched to execute another process 

� Called process switch or context switch

� The process switch is triggered by an interrupt, which is 
generated by a timer.

Interrupt Interrupt Interrupt Interrupt

Process A
Process 
switch

Process B
Process 
switch

Process A
Process 
switch

Process B
Process 
switch

0ms  50ms 150ms 250ms 350ms

Process B ready Process A ready Process B ready
Timeslice



2010/10/6

3

Context switch (process switch)

1. Receive an interrupt from timer

2. Go to the interrupt handler

a. Save the context of process A

b. Find a process ready to run 
(Assume that is process B)

c. Load the context of process B

3. Start (continue) process B

Resources sharing problems

� What are resources?

� CPU, memory, files, peripheral devices, …

� In a multitasking system, resources are shared by 
processes

� Some resources should not be occupied by more than 
one process at a time

� E.g., Printer

� Protect non-sharable resources

� Critical Region:A group of instructions that should be 
executed by only one process at a time

� Mutual exclusion: Requirement for proper implementation 
of a critical region

First algorithm

� Use a flag (a global memory address)

� flag=1: the critical region is occupied 

� flag=0: no process is in the critical region

� Problem: 

� Both processes get into the critical region 

if (flag == 0) {
flag = 1;
/*critical region*/

}

Process A

if (flag == 0) {
flag = 1;

/*critical region*/
}

Process B Context switch to BContext switch to A

Solutions

Testing&setting the flag must be completed w/o 
interruption (atomic)

1. Use disable_Interrupt() to 
prevent context switch 
during the flag test and 
set process.

2. A machine instruction called 
“test-and-set” which cannot be interrupted

3. Semaphore: a properly implemented flag 

Disable_Interrupt();
if (flag == 0) {

flag = 1;
Enable_Interrupt(); 
/ *critical region*/

}
Enable_Interrupt();



2010/10/6

4

Another problem: deadlock

� Example:

� A is in critical region 1, and waits to enter critical region 2

� B is in critical region 2, and waits to enter critical region 1

while (test_set(flag1)) {
/*critical region 1*/

while(!test_set(flag2)); 
/*critical region 2*/

}

Process A

while (test_set(flag2)) {
/*critical region 2*/

while (!test_set(flag1));  
/*critical region 1*/

}

Process B Context switch to BContext switch to A

Conditions for deadlock

1. Competition for non-sharable resources

2. Resources requested on a partial basis

3. Allocated resources cannot be forcibly retrieved

4. Circular wait

Remove any one of the 
conditions can resolve 
the deadlock.

Solutions

Which condition is removed?

1. Kill one of the process

2. Process need to request all the required resources at 
one time

3. Spooling
• For example, stores the data to be printed and waits the 

printer available

4. Divide a file into pieces so that it can be altered by 
different processes

Exercises

� There is a bridge that only allows one car to pass.  When 
two cars meet in middle, it causes “deadlock”.  The 
following solutions remove which conditions

1. Do not let a car onto the bridge until the bridge is empty.

2. If cars meet, make one of them back up.

3. Add a second lane to the bridge.

� What’s the drawback of solution 1?



2010/10/6

5

Virtual memory

� Virtual memory:  employs the physical memory and disk 
space to create the illusion of a larger memory space

� Scenario 1: Suppose there is program A

� Program A need memory  space 1G

� RAM is only of 512M

� Scenario 2: Suppose there are two programs: A and B

� Program A need be placed in memory 0x0000-0x08000

� Program B need be placed in memory 0x0000-0x0A000

� Program A and B are executed concurrently (in the 
multiprogramming sense)

Paging system

� Memory space is divided into a set of equal-sized pieces; 
each piece is called a page. 

� Programs use virtual address to access data and code

� There is a table 
(page table) mapping
virtual address to physical
memory address

� OS maintains the page 
table

Disk

Page 0

Page 1

Page 2

Page 3

Page 4

Page 5

Page 6

Page 7

Virtual address

Main memory

Scenario 1

� Program A need memory space 1G; RAM is only 512M.

� There are 8 pages; each is of128M

� Program A asks OS for data in page 3

� OS finds page 3 is in disk

� OS does paging

� Find a page in RAM
(say page 0)

� Save page 4 to disk

� Load page 3 to RAM

� Program A gets data
from page 3 Disk

Page 0

Page 1

Page 2

Page 3

Page 4

Page 5

Page 6

Page 7

Virtual address

Main memory

Scenario 2

� Program A need be placed in memory 0x0000-0x08000

� Program B need be placed in memory 0x0000-0x0A000

� RAM is of size 64K; each page is 16K

� Program A and program B have different page tables

� When context
switching, OS 
needs to swap
page tables. 

Disk

Page 0

Page 1

Page 2

Page 3

Program A’s
Virtual table

Main memory
Page 0

Page 1

Page 2

Page 3

Program B’s
Virtual table


