

Data storage

- Physical objects that can store bits and retrieve bits can be a storage media.
- Volatile (temporary) memory:
- DRAM, SRAM, SDRAM
- Non-volatile storage (massive storage)
- Optical Systems: CD, DVD
- Magnetic Systems: Hard disk, tape
- Flash driver: iPod, Cell Phone, USB drivers...

>

Memory

- Memory is used inside computers for temporary storages.
- ▶ They are often called RAMs
 - ▶ Random Access Memory: data can be accessed in any order
- Dynamic RAM (DRAM):
- ► Synchronous DRAM (SDRAM)
- ▶ Static RAM (SRAM)

	Exa	1018
The size of data	Zetta	1021
Kilobyte: 2 ¹⁰ bytes ≈ 10 ³ bytes	Yotta	1024
	Xona	1027
Example: 3 KB $\approx 3 \times 10^3$ bytes	Weka	1030
Megabyte: 2^{20} bytes $\approx 10^6$ bytes	Vunda	1033
► Example: 3 MB \approx 3 \times 106 bytes	Uda	1036
Gigabyte: 2^{30} bytes $\approx 10^9$ bytes	Treda	1039
Example: 3 GB $\approx 3 \times 10^9$ bytes	Sorta	1042
'	Rinta	1045
Terabyte: 2^{40} bytes $\approx 10^{12}$ bytes	Quexa	1048
► Example: $3 \text{ TB} \approx 3 \times 10^{12} \text{ bytes}$	Pepta	1051
Petabyte: 2^{50} bytes $\approx 10^{15}$ bytes	Ocha	1054
Example: 3 PB $\approx 3 \times 10^{15}$ bytes	Nena	1057
,	Minga	1060
	Luma	1063

Data storage unit To efficiently access data, computers use 8 bits (a byte) as a smallest storage unit. Some jargons for a byte Most significant bit: at the high-order end Least significant bit: at the low-order end High-order end Most significant bit: at the low-order end Least significant bit: at the low-order end

How data are stored in main memory?

- Each storage unit in memory is numbered by an address so that data can be **stored** and **loaded**.
- $\,\blacktriangleright\,$ These numbers are assigned consecutively starting at zero.
- ▶ Each cell contains a byte (8 bits)
- ▶ The basic transfer unit is usually 4 bytes
- A word for 32bit computer
- So the valid addresses for data transfer are the multiples of four: 0, 4, 8, ...

.....

Stored program concept All desired binary functions can be implemented by gate circuits. But each circuit can only carry out a single function. Stored program concept Design a machine that can perform different functions The machine should contain circuits to perform all basic functions Use a 'program' to control the machine to perform different functions Programs are stored for repeated use

Virtual machine used in the textbook

- ISA: instruction set architecture
- ▶ 16 general-purpose registers (numbered 0 through F)
- ▶ Each register is of one byte (8 bits) long
- Main memory has 256 memory cells (8 bits)
- Machine language is of two bytes (16 bits) long
 - op-code field -> leftmost 4 bits (12 instructions)
 - operand field -> the remaining 12 bits
- ▶ Integer is of 1 byte (8 bits) in 2's complement format
- ▶ Floating-point values are stored in the 8-bit format

		Encoded instructions	Translation
Step 1	. Get one of the values to be		
	added from memory and place it in a register.	156C	Load register 5 with the bit patter found in the memory cell at address 6C.
Step 2	. Get the other value to be		
added from memory and place it in another regist	added from memory and place it in another register.	166D	Load register 6 with the bit patter found in the memory cell at address 6D.
	. Activate the addition circuitry	5056	Add the
	with the registers used in Steps 1 and 2 as inputs and	5056	Add the contents of register 5 and 6 as though they were two's
	another register designated to hold the result.		complement representation and leave the result in register 0.
Step 4	. Store the result in memory.	306E	Store the contents of register 0 in the memory cell at address 6E.
Step 5	. Stop.		
•		C000	Halt.

Instruction types

- Data Transfer
- ▶ Copy data between CPU and main memory
- ▶ E.g., LOAD, STORE, device I/O,
- ▶ Arithmetic/Logic
- ▶ Use existing data values to compute a new value
- ▶ E.g., AND, OR, XOR, SHIFT, ROTATE, etc.
- ▶ Control
- Direct the execution of the program
- ► E.g., JUMP, BRANCH, JNE (conditional jump),

•

Encoded instructions	Translation	Data transfer
156C	Load register 5 with the bit pattern found in the memory cell at address 6C.	Data transfer
166D	Load register 6 with the bit pattern found in the memory cell at address 6D.	
5056	Add the contents of register 5 and 6 as though they were two's	Arithmetic/Logic
	complement representation and leave the result in register 0.	Data transfer
306E	Store the contents of register 0 in the memory cell at address 6E.	Control
C000	Halt.	Control

Shift operation Circular shift (rotation) Logical shift Filling the hole with bit 0 Original: 00000101_b → 5_d After 1 left shifting: 00001010_b → 10_d After 2 left shifting: 00010100_b → 20_d Arithmetic shift Shifts that leaves the sign bit unchanged

