Binary number system

－Computer（electronic）systems prefer binary numbers
－Binary number：represent a number in base－2
a．Base ten syssem
［375］－Representation

$3 \times 10^{2}+7 \times 10^{1}+5 \times 10^{0}$
－Some terminology
－Bit：a binary digit（0 or I）
－Hexadecimal notation（十六進位）
Represents each 4 bits by a single symbol
－Example：A3 denotes 10100011

Outline

－Integer：decimal－binary conversion

Binary to decimal

－What is the decimal number of $10010 \mathrm{I}_{\mathrm{b}}$ ？
－Integer addition
－Negative integer（2＇s complement representation）
－Real numbers（floating point representation）

Decimal to binary

－What is the binary number of 13_{d} ？
－Step I：Divide the value by 2 and record the remainder
－Step 2：If quotient is not zero，use the quotient as the new value and repeat step I
－Step 3：The binary representation is the recorded remainders listed from right to left

6	Quotient $=6$
$2 \longdiv { 1 3 }$	Remainder $=1$
3	Quotient $=3$
$2 \longdiv { 6 }$	Remainder $=0$
1	Quotient＝ 1
$2 \longdiv { 3 }$	Remainder $=1$
0	Quotient $=0$
$2 \longdiv { 1 }$	Remainder $=1$

十進位轉二進位演算法 Three algorithms

－Problem：converting n_{d} to m_{b} ．

－Algorithm I：as mentioned in the last class
－Algorithm 2：
－ $\mathrm{m}_{\mathrm{b}}=0$
－For $i=I$ to n_{d}
－$m_{b}=m_{b}+1$

－Algorithm 3：What is the cost of $m_{b}=m_{b}+1$ ？
－ $\mathrm{m}_{\mathrm{b}}=0$
－While n_{d} is not 0
－Find $2^{k} \leq n_{d}<2^{k+1} \longrightarrow$ What is the cost of finding k ？
－$m_{b}=m_{b}+2^{k} \quad$ The cost of $m_{b}+2^{k}$ is just putting I
b $n_{d}=n_{d}-2^{k} \quad$ at the kth position of m_{b}
\longrightarrow What is the cost of．$n_{d}=n_{d}-2^{k} ?$ \qquad －－．．．．．．．．

Algorithm

－A finite sequence of instructions to describe a systematical method to solve a problem
－We can represent the＇decimal－to－binary＇algorithm by a flow chart
－It has starting point［step I］
－Step 2 is a condition statement
－Step I＋step 2 is a loop statement
－The problem size is shrunk after each loop
－The loop can be terminated ［ when quotient $==0$ ］

Homework：write an algorithm to convert binary to decimal

Integer addition

Another example

- One bit addition

0	1	0	1
+0	+0	+1	+1
0	1	10	

-What is $5_{d}+9_{d}$ using binary number representation?

$$
\begin{array}{r}
1111 \\
00111010 \\
+\quad 00011011 \\
\hline 01010101
\end{array}
$$

Binary number in computer systems

How about negative integers?

- Mathematically, a binary integer can have arbitrary number of bits.
- In computer systems, all data has a limited number of bits.
- For example, there are different sized (data type) integers
, char: 8 bits: $[0,255]$
, unsigned short: 16 bits: $[0,65535]$
unsigned int: 32 bits: [0,4294967295]
- Overflow: when adding two integers, the result exceeds the numerical range of the data type
- Ex: (char) I23+(char) 234 = (char) I0I

- We use sign to distinguish positive and negative numbers.
- In computer system, we can use a bit to present the sign.
- In a 4 bit integer, 000 I for I and IOOI for -I. (sign bit)
- Good for notation, but difficult for calculation.
- One bit subtraction

- Example:4-1 $\quad-11$

0100
01001
-00011

Negative integer

- Can we design a negative number representation such that $4-I=4+(-I)$ can be done easily (as easy as addition)?
- Hint: all number representation in computers has a finite number of bits.
- If we use 4 bits to represent an integer
- Zero is 0000 , and one is 0001 .What is $-I$?
- Find $b_{3}, b_{2}, b_{1}, b_{0}$ such that

$$
\begin{aligned}
& \begin{array}{l}
\text { This I will be "truncated " } \\
\text { since it is a } 4 \text { bits integer }
\end{array} \\
& +\quad+0001 \\
& \hline 00000
\end{aligned}
$$

- Thus, we can use $I \| I_{b}$ to represent $-I_{d}$.

Two's complement

- This number representation is called the "two's complement".
- Algorithm to find the 2's complement of an integer
- Step I: invert each bit, 0 to I and I to 0
- Step 2:Add I.

Textbook uses a different algorithm, which is used in circuit design

Data type

- 1010_{b} can be 10_{d} or -6_{d}. How to tell?
- Given a bit pattern, one need to specify its 'data type'
- 1010_{b} is 10_{d} for unsigned 4 bit int and -6_{d} for signed 4 bit int
- In C, there are data types for signed and unsigned integer

Data type	Number of bits	Numerical range
char	8	$[0,255]$
unsigned short	16	$[0,65525]$
short	16	$[-32768,+32767]$
unsigned int (long)	32	$[0,4,294,967,295]$
int, long	32	$[-2,147,483,648,+2,147,483,647]$
unsigned long long	64	$\left[0,2^{64}-1\right]$
long long	64	$\left[-2^{63}, 2^{63}-1\right]$

2's complement to decimal

- Give a 2's complement representation, how to know it is a positive number or a negative number?
- Observe:
- The left most bit of all positive numbers is 0 , and of all negative numbers is I
- The left most bit of singed data type is called the 'sign bit'
- Converting 2's complement to decimal
- Stepl:check the sign bit to tell the sign
- Step 2: If it is a negative number, convert it to its 2's complement
- Step 3: Convert the number to decimal and add the sign

$\begin{gathered} \text { Bit } \\ \text { patern } \end{gathered}$	Value $\begin{gathered}\text { Vepresented } \\ \text { red }\end{gathered}$
0111	7
${ }_{0}^{0110}$	${ }_{5}^{6}$
0100	${ }_{3}$
- 0.11	${ }_{2}^{3}$
0001	1
0000	${ }_{-1}$
1110	-2
${ }_{1200}^{1201}$	-3
$1{ }^{10} 11$	-5
$1{ }^{1010}$	-6
H000	-8

Step 2 and step 3 are like subroutines, which invoke other algorithms mentioned before.

Another type of overflow

2's complement addition

- Examples

Problem in base ten

$\begin{array}{r} 3 \\ +\quad 2 \\ \hline \end{array}$	\rightarrow	$\begin{array}{r} 0011 \\ +0010 \\ \hline 0101 \end{array}$	\longrightarrow	5
$\begin{array}{r} -3 \\ +-2 \\ \hline \end{array}$	\rightarrow	$\begin{array}{r} 1101 \\ +1110 \\ \hline 1011 \end{array}$	\longrightarrow	-5
$\begin{array}{r} 7 \\ +-5 \\ \hline \end{array}$	\rightarrow	$\begin{array}{r} 0111 \\ +1011 \\ \hline 0010 \end{array}$	\longrightarrow	2

-What is $5+4$ in signed 4 bit representation?

$$
5{ }_{d}+4_{d}=010 I_{b}+0100_{b}=100 I_{b}
$$

- This is another type of overflow
- Adding two positive numbers results a negative number; or adding two negative numbers results a positive number.
- A 4 bits 2's complement system can only represent 7~ -8
b. Using patterns of length four

Bit pattern	Value rapresented
0111	7
0110	6
0101	5
0100	4
00011	3
0010	2
0001	1
0000	0
1111	-1
1110	-2
1101	-3
1100	-4
1011	-5
1010	-6
1001	-7
1000	-8

$-$

Fraction point

- To represent a wide range of numbers, we allow the decimal point to "float".

$$
40 . \mathrm{I}_{\mathrm{d}}=4.0 \mathrm{I}_{\mathrm{d}} \times 10^{1}=40 \mathrm{I}_{\mathrm{d}} \times 10^{-1}=0.40 \mathrm{I}_{\mathrm{d}} \times 10^{2}
$$

- It is just like the scientific notation of numbers.

$$
10 I .10 I_{\mathrm{b}}=+1.0110 \mathrm{I}_{\mathrm{b}} \times 2^{2 \mathrm{~d}}=+1.0110 \mathrm{I}_{\mathrm{b}} \times 2^{10 \mathrm{~b}} .
$$

- This is called the floating point representation of fractions.

Signed number		Sign-bit notation	2's complement	Excess notation
	8			1111
representations	7	0111	0111	1110
	6	0110	0110	1101
Comparison of 4 bit signed integer representation by sign-bit notation, 2's complement, and excess notation	5	0101	0101	1100
	4	0100	0100	1011
	3	0011	0011	1010
	2	0010	0010	1001
	1	0001	0001	1000
	0	0000, 1000	0000	0111
	-1	1001	1111	0110
	-2	1010	1110	0101
	-3	1011	1101	0100
	-4	1100	1100	0011
	-5	1101	1011	0010
	-6	1110	1010	0001
	-7	1111	1001	0000
-	-8		1000	

Floating-point numbers

- In C (and most programming languages), there are two

Truncation error

- Mantissa field is not large enough
- $25 / 8=2.625 \Rightarrow 2.5+$ round off error (0.125)
- Nonterminating representation
- $0.1=1 / 16+1 / 32+1 / 256+1 / 512+\ldots$
- Change the unit of measure
- Order of computation:
- $2.5+0.125+0.125 \Rightarrow 2.5+0+0=2.5$
- $2.5+(0.125+0.125) \Rightarrow 2.5+0.25=2.75$

