
2010/9/19

1

Binary numbers

Binary number system

� Computer (electronic) systems prefer binary numbers

� Binary number: represent a number in base-2

� Some terminology

� Bit: a binary digit (0 or 1)

� Hexadecimal notation (十六進位)

� Represents each 4 bits by a single symbol

� Example: A3 denotes 1010 0011

012 105107103 ×+×+× 0123 21212021 ×+×+×+×

Outline

� Integer: decimal-binary conversion

� Integer addition

� Negative integer (2’s complement representation)

� Real numbers (floating point representation)

Binary to decimal

� What is the decimal number of 100101b?

20

21

22

23

24

25

2010/9/19

2

Decimal to binary

� What is the binary number of 13d?

� Step 1: Divide the value by 2 and record the remainder

� Step 2: If quotient is not zero, use the quotient as the new
value and repeat step 1

� Step 3: The binary representation is the recorded remainders
listed from right to left

6 Quotient = 6
Remainder = 11

Quotient = 3
Remainder = 0

3

0
1 Quotient = 1

Remainder = 11
0 Quotient = 0

Remainder = 11

Algorithm

� A finite sequence of instructions to describe a
systematical method to solve a problem

� We can represent the ‘decimal-to-binary’ algorithm by a
flow chart

� It has starting point [step 1]

� Step 2 is a condition statement

� Step1+step 2 is a loop statement

� The problem size is shrunk
after each loop

� The loop can be terminated
[when quotient ==0]

n/2

start

Quotient
==0?

Arrange the
reminders to get

the answer

Yes

No, let
n=quotient

Homework: write an algorithm to convert binary to decimal

十進位轉二進位演算法 Three algorithms

� Problem: converting nd to mb.

� Algorithm 1: as mentioned in the last class

� Algorithm 2:
� mb = 0

� For i = 1 to nd
� mb = mb + 1

� Algorithm 3:
� mb = 0

� While nd is not 0

� Find 2k ≤nd<2k+1
� mb = mb + 2

k

� nd = nd – 2k

What is the cost of mb = mb+1?

What is the cost of finding k?

The cost of mb+2
k is just putting 1

at the kth position of mb

What is the cost of nd = nd– 2k?

n/2

start

Quotient
==0?

Arrange the
reminders to get

the answer

Yes

No, let
n=quotient

Recursive algorithm

� The first algorithm is a recursive algorithm

� To answer what the binary of 13d is, you
need to answer what the binary of 6d is.

� To answer what the binary of 6d is, you
need to answer what the binary of 3d is.

� To answer what the binary of 3d is, you
need to answer what the binary of 1d is.

� Recursive algorithm

� Turn a big problem into one or several smaller subproblems

� Each subproblem is identical to the original one except size

� Thus, they can be solved by the same method.

� Need a termination condition.

Binary(13)

Binary(6)

Binary(3)

Binary(1)

1

0

1

1

2010/9/19

3

Integer addition

� One bit addition

� What is 5d+9d using binary number representation?

0 1 0 1

1 0 0 1

5

9
14

+

1 1 1 0

Another example

00111010
+ 00011011

10

1

1

1

01

1

0

1

10

Binary number in computer systems

� Mathematically, a binary integer can have arbitrary
number of bits.

� In computer systems, all data has a limited number of bits.

� For example, there are different sized (data type) integers

� char: 8 bits: [0, 255]

� unsigned short: 16 bits: [0, 65535]

� unsigned int: 32 bits: [0, 4294967295]

� Overflow: when adding two integers,
the result exceeds the numerical range
of the data type

� Ex: (char) 123+(char) 234 = (char) 101

How about negative integers?

� We use sign to distinguish positive and negative numbers.

� In computer system, we can use a bit to present the sign.

� In a 4 bit integer, 0001 for 1 and 1001 for -1. (sign bit)

� Good for notation, but difficult for calculation.

� One bit subtraction

� Example: 4-1

0
- 0
0

1
- 0
1

1
-1
0

0
- 1

-1 1 = -1*2+1*1=-1

0 1 0 0
- 0 0 0 1

1

1

1

-1

00

2010/9/19

4

Negative integer

� Can we design a negative number representation such
that 4-1=4+(-1) can be done easily (as easy as addition)?

� Hint: all number representation in computers has a finite
number of bits.

� If we use 4 bits to represent an integer

� Zero is 0000, and one is 0001. What is -1?

� Find b3, b2, b1, b0 such that

� Thus, we can use 1111b to represent -1d.

b3 b2 b1 b0

+ 0 0 0 1

1 0 0 0 0

This 1 will be “truncated ”
since it is a 4 bits integer

Two’s complement

� This number representation is called the “two’s
complement”.

� Algorithm to find the 2’s complement of an integer
� Step 1: invert each bit, 0 to 1 and 1 to 0

� Step 2: Add 1.

Textbook uses a different algorithm, which is used in circuit design

6d = 0110b

1001b

1001b

+ 0001b

1010b= –6d

0110b (6)

+ 1010b (–6)

1 0000b (0)

truncated

-6d = 1010b

0101b

0101b

+ 0001b

0110b= 6d

Data type

� 1010b can be 10d or -6d. How to tell?

� Given a bit pattern, one need to specify its ‘data type’

� 1010b is 10d for unsigned 4 bit int and -6d for signed 4 bit int

� In C, there are data types for signed and unsigned integer

Data type Number of bits Numerical range

char 8 [0,255]

unsigned short 16 [0,65525]

short 16 [−32768 , +32767]

unsigned int (long) 32 [0, 4,294,967,295]

int, long 32 [−2,147,483,648 , +2,147,483,647]

unsigned long long 64 [0, 264−1]

long long 64 [−263, 263−1]

2’s complement to decimal

� Give a 2’s complement representation, how to know it is
a positive number or a negative number?

� Observe:
� The left most bit of all positive numbers is
0, and of all negative numbers is 1

� The left most bit of singed data type is called
the ‘sign bit’

� Converting 2’s complement to decimal
� Step1: check the sign bit to tell the sign

� Step 2: If it is a negative number, convert
it to its 2’s complement

� Step 3: Convert the number to decimal and
add the sign

Step 2 and step 3 are like subroutines, which invoke other algorithms mentioned before.

2010/9/19

5

2’s complement addition

� Examples

Another type of overflow

� What is 5+4 in signed 4 bit representation?

� This is another type of overflow

� Adding two positive numbers results a
negative number; or adding two negative
numbers results a positive number.

� A 4 bits 2’s complement system can only
represent 7~ –8

5d+4d=0101b + 0100b =1001b

Fraction

� The binary number of fractions.

� 5.625

2-3

2-2

2-1

20

21

22

Fraction point

� To represent a wide range of numbers, we allow the
decimal point to “float”.

40.1d = 4.01d×101 = 401d×10-1 = 0.401d×102

� It is just like the scientific notation of numbers.

101.101b = +1.01101b × 22d = +1.01101b × 210b.

� This is called the floating
point representation of
fractions.

2010/9/19

6

Coding the value of 25/8

� Exponent uses excess
notation

25/8

MantissaExponentSign

Binary
representation 10.101

Normalization 0.10101× 22

1 0 1 0 truncated1 1 00

Signed number

representations

� Comparison of
4 bit signed integer
representation by
sign-bit notation,
2’s complement, and
excess notation

Sign-bit
notation

2’s
complement

Excess
notation

8 1111

7 0111 0111 1110

6 0110 0110 1101

5 0101 0101 1100

4 0100 0100 1011

3 0011 0011 1010

2 0010 0010 1001

1 0001 0001 1000

0 0000, 1000 0000 0111

-1 1001 1111 0110

-2 1010 1110 0101

-3 1011 1101 0100

-4 1100 1100 0011

-5 1101 1011 0010

-6 1110 1010 0001

-7 1111 1001 0000

-8 1000

Floating-point numbers

� In C (and most programming languages), there are two
data types for real numbers

Data
type

Size Structure Range Precision

float 32 bits Sign:1 bit
Exponent: 8 bits
Mantissa: 23 bits

± ~10-44.85 to
~1038.53

~ 108

double 64 bits Sign:1 bit
Exponent: 11 bits
Mantissa: 52 bits

± ~10-323.3 to
~10308.3

~1016

Truncation error

� Mantissa field is not large enough

� 25/8 = 2.625 ⇒

� Nonterminating representation

� 0.1 = 1/16+
1/32+

1/256+
1/512 + ...

� Change the unit of measure

� Order of computation:

� 2.5 + 0.125 + 0.125 ⇒

� 2.5 + (0.125+0.125) ⇒

2.5 + round off error (0.125)

2.5+0+0 =2.5
2.5+0.25=2.75

More in 數值分析

