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CS5321

Numerical Optimization

18 Sequential Quadratic 

Programming

(Active Set methods)
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Local SQP model

� The problem  minxf (x) subject to c(x)=0 can be 

modeled as a quadratic programming at x=xk

� Assumptions:

� A(x), the constraint Jacobian, has full row rank.

� ∇xx
2L(x,λ) is positive definite on the tangent space of 

constraints, that is, dT∇xx
2L(x,λ)d>0 for all d≠0,Ad=0. 

min
p

mk(p) = fk +∇f
T
k p+

1

2
pT∇2

xxLkp

s.t. Akp+ ck = 0
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Inequality constraints

� For

� The local quadratic model is 

min
x

f(x)

s.t. ci(x) = 0, i ∈ E
ci(x) ≥ 0, i ∈ I

min
p

mk(p) = fk +∇f
T
k p+

1

2
pT∇2

xxLkp

s.t. ∇ci(xk)
T p+ ci(xk) = 0, i ∈ E

∇ci(xk)
T p+ ci(xk) ≥ 0, i ∈ I
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Theorem of active set methods

� Theorem 18.1 (Robinson 1974)

� If x* is a local solution of the original problem with 

some λ*, and the pair (x*, λ*) satisfies the KKT 

condition, the LICO condition, and the second order 

sufficient conditions, then for (xk, λk) sufficiently close 

to (x*, λ*), then there is a local quadratic model whose 

active set is the same as that of the original problem.
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Sequential QP method

1. Choose an initial guess x0, λ0

2. For k = 1, 2, 3, …

a) Evaluate fk, ∇fk, ∇xx
2Lk, ck, and ∇ck(=Ak)

b) Solve the local quadratic programming

c) Set xk+1 = xk+ pk

� How to choose the active set? 

� How to solve 2(b)? 

� Haven’t we solved that in chap 16? (Yes and No)
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Algorithms

� Two types of algorithms to choose active set

� Inequality constrained QP (IQP): Solve QPs with 

inequality constraints and take the local active set as 

the optimal one. 

� Equality constrained QP (EQP): Select constraints as 

the active set and solve equality constrained QPs.

� Basic algorithms to solve 2(b)

1. Line search methods

2. Trust region methods

3. Nonlinear gradient projection
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Solving SQP

� All techniques in chap 16 can be applied.

� But there are additional problems need be solved

� Linearized constraints may not be consistent

� Convergence guarantee (Hessian is not positive def)

� And some useful properties can be used

� Hessian can be updated by the quasi-Newton method

� Solutions can be used as an initial guess (warm start)

� The exact solution is not required.
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Inconsistent linearizations

� Linearizing at xk=1 gives 

� The constraints cannot be enforced since they 

may not exact or consistent. Use penalty function 

1− x ≥ 0
x2 − 4 ≥ 0

−p ≥ 0
2p− 3 ≥ 0

min
x,v,w,t

f(x) + µ
∑

i∈E

(vi + wi) + µ
∑

i∈I

ti

subject to ci(x) = vi + wi i ∈ E
ci(x) ≥ −ti i ∈ I
v, w, t ≥ 0
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Quasi-Newton approximations

� Recall for 

the update of Hessian is (BFGS, chap 6)

� If the updated Hessian Bk+1 is not positive definite

� Condition fails.

� Define for  θ∈(0,1)

sk = xk+1 − xk

yk = ∇xL(xk+1, λk+1)−∇xL(xk, λk)

Bk+1 = Bk −
Bksks

T
kBk

sT
k
Bksk

+
yky

T
k

yT
k
sk

sTkBk+1sk = sTk yk > 0

rk = θkyk + (1− θk)Bksk

Bk+1 = Bk −
Bksks

T
kBk

sT
k
Bksk

+
rkr

T
k

rT
k
sk
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BFGS for reduced-Hessian

� Let

Need to solve

1. Solve λ* first to obtained an active set.

2. Ignore term.  Solve

� The reduced secant formula is

� Use BFGS on this equation.

AT =
(
Q1 Q2

)( R

0

)
, p = Q1p1 +Q2p2

QT2GQ1p1 (QT2GQ2)p2 = −Q
T
2 g

Rp1 = −h

(QT
2GQ2)p2 = −QT

2GQ1p1 −QT2 g

RTλ∗ = QT1 (g +Gp)

(QT2GQ2)k+1(αkpk) = QT2 [∇xL(xk+1, λk+1)−∇xL(xk, λk+1)]
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1.Line search SQP method

� Set step length αk such that the merit function

is sufficiently decreased?

� One of the Wolfe condition (chap 3)

� D(φ1, pk) is the directional derivative of φ1 in pk. 

(theorem 18.2 )

� Let αk =1 and decrease it until the condition is 

satisfied.

φ1(x, µ) = f(x) + µ‖c(x)‖1

φ1(xk + αkpk, µk) ≤ φ1(xk, µk) + ´ αkD(φ1(xk, µ), pk)

D(φ1(xk, µ), pk) = ∇f
T
k pk − µ‖ck‖1
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2.Trust region SQP method

� Problem modification

1. Relax the constraints (rk=0 in the original algorithm)

2. Add trust region radius as a constraint

� There are smart ways to choose rk.  For example,

minp mk(p) = fk +∇f
T
k p+

1

2
pT∇2xxLkp

s.t. Akp+ ck = rk, ‖p‖2 ≤ ∆k

minv rk(v) = ‖Akv + ck‖2
s.t. ‖v‖2 ≤ 0.8∆k
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3.Nonlinear gradient projection

� Let Bk be the s.p.d. approximation to ∇2f (xk).

� Step direction is pk=x−xk

� Combine with the line-search dir xk+1=xk+αkpk.

� Choose αk s.t. f (xk+1) ≤ f (xk)+ηαk∇fk
Tpk.

� Combine with the trust region bounds ||pk||≤ ∆k.

min
x

qk(x) = fk +∇f
T
k (x − xk) +

1

2
(x − xk)

TBk(x − xk)

s.t. l ≤ x ≤ u

min
x

qk(x) = fk +∇f
T
k (x − xk) +

1

2
(x − xk)

TBk(x − xk)

s.t. max(l, xk −∆ke) ≤ x ≤ min(u, xk +∆ke)


