CS5321
 Numerical Optimization

18 Sequential Quadratic
Programming
(Active Set methods)

Local SQP model

- The problem $\min _{x} f(x)$ subject to $c(x)=0$ can be modeled as a quadratic programming at $x=x_{k}$

$$
\begin{array}{cl}
\min _{p} & m_{k}(p)=f_{k}+\nabla f_{k}^{T} p+\frac{1}{2} p^{T} \nabla_{x x}^{2} L_{k} p \\
\text { s.t. } & A_{k} p+c_{k}=0
\end{array}
$$

- Assumptions:
- $A(x)$, the constraint Jacobian, has full row rank.
- $\nabla_{x x}{ }^{2} L(x, \lambda)$ is positive definite on the tangent space of constraints, that is, $d^{\mathrm{T}} \nabla_{x x}{ }^{2} L(x, \lambda) d>0$ for all $d \neq 0, A d=0$.

Inequality constraints

- For $\min _{x} f(x)$

$$
\begin{array}{ll}
\text { s.t. } & c_{i}(x)=0, i \in \mathbf{E} \\
& c_{i}(x) \geq 0, i \in \mathbf{I}
\end{array}
$$

- The local quadratic model is

$$
\begin{array}{cl}
\min _{p} & m_{k}(p)=f_{k}+\nabla f_{k}^{T} p+\frac{1}{2} p^{T} \nabla_{x x}^{2} L_{k} p \\
\text { s.t. } & \nabla c_{i}\left(x_{k}\right)^{T} p+c_{i}\left(x_{k}\right)=0, i \in \mathbf{E} \\
& \nabla c_{i}\left(x_{k}\right)^{T} p+c_{i}\left(x_{k}\right) \geq 0, i \in \mathbf{I}
\end{array}
$$

Theorem of active set methods

- Theorem 18.1 (Robinson 1974)
- If x^{*} is a local solution of the original problem with some λ^{*}, and the pair $\left(x^{*}, \lambda^{*}\right)$ satisfies the KKT condition, the LICO condition, and the second order sufficient conditions, then for $\left(x_{k}, \lambda_{k}\right)$ sufficiently close to $\left(x^{*}, \lambda^{*}\right)$, then there is a local quadratic model whose active set is the same as that of the original problem.

Sequential QP method

1. Choose an initial guess x_{0}, λ_{0}
2. For $k=1,2,3, \ldots$
a) Evaluate $f_{k}, \nabla f_{k}, \nabla_{x x}{ }^{2} L_{k}, c_{k}$, and $\nabla c_{k}\left(=A_{k}\right)$
b) Solve the local quadratic programming
c) Set $x_{k+1}=x_{k}+p_{k}$

- How to choose the active set?
- How to solve 2(b)?
- Haven't we solved that in chap 16? (Yes and No)

Algorithms

- Two types of algorithms to choose active set
- Inequality constrained QP (IQP): Solve QPs with inequality constraints and take the local active set as the optimal one.
- Equality constrained QP (EQP): Select constraints as the active set and solve equality constrained QPs.
- Basic algorithms to solve 2(b)

1. Line search methods
2. Trust region methods Nonlinear gradient projection

Solving SQP

- All techniques in chap 16 can be applied.
- But there are additional problems need be solved
- Linearized constraints may not be consistent
- Convergence guarantee (Hessian is not positive def)
- And some useful properties can be used
- Hessian can be updated by the quasi-Newton method
- Solutions can be used as an initial guess (warm start)
- The exact solution is not required.

Inconsistent linearizations

- Linearizing $1-x \geq 0$ at $x_{k}=1$ gives $-p \geq 0$

$$
x^{2}-4 \geq 0 \quad 2 p-3 \geq 0
$$

- The constraints cannot be enforced since they may not exact or consistent. Use penalty function

$$
\begin{array}{ll}
\min _{x, v, w, t} f(x)+\mu \sum_{i \in \mathbf{E}}\left(v_{i}+w_{i}\right)+\mu \sum_{i \in \mathbf{I}} t_{i} \\
\text { subject to } & c_{i}(x)=v_{i}+w_{i} \quad i \in \mathbf{E} \\
& c_{i}(x) \geq-t_{i} \\
& v, w, t \geq 0
\end{array}
$$

Quasi-Newton approximations

$$
s_{k}=x_{k+1}-x_{k}
$$

- Recall for $y_{k}=\nabla_{x} L\left(x_{k+1}, \lambda_{k+1}\right)-\nabla_{x} L\left(x_{k}, \lambda_{k}\right)$ the update of Hessian is (BFGS, chap 6)

$$
B_{k+1}=B_{k}-\frac{B_{k} s_{k} s_{k}^{T} B_{k}}{s_{k}^{T} B_{k} s_{k}}+\frac{y_{k} y_{k}^{T}}{y_{k}^{T} s_{k}}
$$

- If the updated Hessian B_{k+1} is not positive definite
- Condition $s_{k}^{T} B_{k+1} s_{k}=s_{k}^{T} y_{k}>0$ fails.
- Define $r_{k}=\theta_{k} y_{k}+\left(1-\theta_{k}\right) B_{k} s_{k}$ for $\theta \in(0,1)$

$$
B_{k+1}=B_{k}-\frac{B_{k} s_{k} s_{k}^{T} B_{k}}{s_{k}^{T} B_{k} s_{k}}+\frac{r_{k} r_{k}^{T}}{r_{k}^{T} s_{k}}
$$

BFGS for reduced-Hessian

- Let $\begin{aligned} & A^{T}=\left(\begin{array}{ll}Q_{1} & Q_{2}\end{array}\right)\binom{R}{0}, p=Q_{1} p_{1}+Q_{2} p_{2} \\ & R p_{1}=-h\end{aligned}$

Need to solve $\left(Q_{2}^{T} G Q_{2}\right) p_{2}=-Q_{2}^{T} G Q_{1} p_{1}-Q_{2}^{T} g$

$$
R^{T} \lambda^{*}=Q_{1}^{T}(g+G p)
$$

1. Solve λ^{*} first to obtained an active set.
2. Ignore $Q_{2}^{T} G Q_{1} p_{1}$ term. Solve $\left(Q_{2}^{T} G Q_{2}\right) p_{2}=-Q_{2}^{T} g$

- The reduced secant formula is

$$
\left(Q_{2}^{T} G Q_{2}\right)_{k+1}\left(\alpha_{k} p_{k}\right)=Q_{2}^{T}\left[\nabla_{x} L\left(x_{k+1}, \lambda_{k+1}\right)-\nabla_{x} L\left(x_{k}, \lambda_{k+1}\right)\right]
$$

- Use BFGS on this equation.

1.Line search SQP method

- Set step length α_{k} such that the merit function $\phi_{1}(x, \mu)=f(x)+\mu\|c(x)\|_{1}$ is sufficiently decreased?
$\phi_{1}\left(x_{k}+\alpha_{k} p_{k}, \mu_{k}\right) \leq \phi_{1}\left(x_{k}, \mu_{k}\right)+{ }^{\prime} \alpha_{k} D\left(\phi_{1}\left(x_{k}, \mu\right), p_{k}\right)$
- One of the Wolfe condition (chap 3)
- $D\left(\phi_{1}, p_{k}\right)$ is the directional derivative of ϕ_{1} in p_{k}. $D\left(\phi_{1}\left(x_{k}, \mu\right), p_{k}\right)=\nabla f_{k}^{T} p_{k}-\mu\left\|c_{k}\right\|_{1}$ (theorem 18.2)
- Let $\alpha_{k}=1$ and decrease it until the condition is satisfied.

2.Trust region SQP method

- Problem modification

$$
\begin{aligned}
\min _{p} & m_{k}(p)=f_{k}+\nabla f_{k}^{T} p+\frac{1}{2} p^{T} \nabla_{x x}^{2} L_{k} p \\
\mathrm{s.t.} & A_{k} p+c_{k}=r_{k},\|p\|_{2} \leq \Delta_{k}
\end{aligned}
$$

1. Relax the constraints $\left(r_{k}=0\right.$ in the original algorithm)
2. Add trust region radius as a constraint

- There are smart ways to choose r_{k}. For example,

$$
\begin{aligned}
\min _{v} & r_{k}(v)=\left\|A_{k} v+c_{k}\right\|_{2} \\
\text { s.t. } & \|v\|_{2} \leq 0.8 \Delta_{k}
\end{aligned}
$$

3.Nonlinear gradient projection

- Let B_{k} be the s.p.d. approximation to $\nabla^{2} f\left(x_{k}\right)$.

$$
\min _{x} \quad q_{k}(x)=f_{k}+\nabla f_{k}^{T}\left(x-x_{k}\right)+\frac{1}{2}\left(x-x_{k}\right)^{T} B_{k}\left(x-x_{k}\right)
$$

s.t. $\quad l \leq x \leq u$

- Step direction is $p_{k}=x-x_{k}$
- Combine with the line-search $\operatorname{dir} x_{k+1}=x_{k}+\alpha_{k} p_{k}$.
- Choose α_{k} s.t. $f\left(x_{k+1}\right) \leq f\left(x_{k}\right)+\eta \alpha_{k} \nabla f_{k}^{\mathrm{T}} p_{k}$.
- Combine with the trust region bounds $\left\|p_{k}\right\| \leq \Delta_{k}$.

$$
\begin{array}{cl}
\min _{x} & q_{k}(x)=f_{k}+\nabla f_{k}^{T}\left(x-x_{k}\right)+\frac{1}{2}\left(x-x_{k}\right)^{T} B_{k}\left(x-x_{k}\right) \\
\text { s.t. } & \max \left(l, x_{k}-\Delta_{k} e\right) \leq x \leq \min \left(u, x_{k}+\Delta_{k} e\right)
\end{array}
$$

