CS5321
 Numerical Optimization

16 Quadratic Programming

Quadratic programming

- Quadratic object function + linear constraints

$$
\begin{array}{lll}
\min _{x} & q(x)=\frac{1}{2} x^{T} G x+x^{T} c & \\
\text { s.t. } & a_{i}^{T} x=b_{i} & i \in \mathbf{E} \\
& a_{i}^{T} x \geq b_{i} & i \in \mathbf{I}
\end{array}
$$

- If G is positive semidefinite, it is called convex QP.
- If G is positive definite, it is called strictly convex QP.
- If G is indefinite, it is called nonconvex QP.

Equality constraints

- First order condition for optimality (chap12)

$$
\left(\begin{array}{cc}
G & A^{T} \\
A & 0
\end{array}\right)\binom{-p}{\lambda^{*}}=\binom{g}{h}
$$

- where $h=A x-b, g=c+G x$, and $p=x^{*}-x$. Pair $\left(x^{*}, \lambda^{*}\right)$ is the optimal solution and Lagrangian multipliers.
- $K=\left(\begin{array}{cc}G & A^{T} \\ A & 0\end{array}\right)$ is called the KKT matrix,
which is indefinite, nonsingular if the project Hessian $Z^{\mathrm{T}} G Z$ is positive definite. (chap 12)

Solving the KKT system

- Direct methods
- Symmetric indefinite factorization $P^{\mathrm{T}} K P=L B L^{\mathrm{T}}$.
- Schur complement method (1)
- Null-Space method (2)
- Iterative methods
- CG applied to the reduced system (3)
- The projected CG method (4)
- Newton-Krylov method

1.Schur-complement method

- Assume G is invertible.

$$
\begin{aligned}
\left(\begin{array}{cc}
I & 0 \\
A G^{-1} & -I
\end{array}\right)\left(\begin{array}{cc}
G & A^{T} \\
A & 0
\end{array}\right)\binom{-p}{\lambda^{*}} & =\left(\begin{array}{cc}
I & 0 \\
A G^{-1} & -I
\end{array}\right)\binom{g}{h} \\
\left(\begin{array}{cc}
G & A^{T} \\
0 & A G^{-1} A^{T}
\end{array}\right)\binom{-p}{\lambda^{*}} & =\binom{g}{A G^{-1} g-h}
\end{aligned}
$$

- This gives two equations
- Solve for λ^{*} first.

$$
-G p+A^{T} \lambda^{*}=g
$$

Then use λ^{*} to solve p.
$\left(A G^{-1} A^{T}\right) \lambda^{*}=A G^{-1} g-h$

- Matrix $A G^{-1} A^{\mathrm{T}}$ is called the Schur-complement

2.Null space method

- Require (1) A has full row rank (2) $Z^{\mathrm{T}} G Z$ is positive definite. (G itself can be singular.)
- QR decomposition of A^{T}, and partition $p\left(Q_{2}=Z\right)$

$$
A^{T}=\left(\begin{array}{ll}
Q_{1} & Q_{2}
\end{array}\right)\binom{R}{0}, p=Q_{1} p_{1}+Q_{2} p_{2}
$$

$$
\left(\begin{array}{cc}
G & A^{T} \\
A & 0
\end{array}\right)\binom{-p}{\lambda^{*}}=\left(\begin{array}{cc}
G & Q_{1} R \\
R^{T} Q_{1}^{T} & 0
\end{array}\right)\binom{-p}{\lambda^{*}}=\binom{g}{h}
$$

$$
R p_{1}=-h
$$

$$
\left(Q_{2}^{T} G Q_{2}\right) p_{2}=-Q_{2}^{T} G Q_{1} p_{1}-Q_{2}^{T} g
$$

$$
R^{T} \lambda^{*}=Q_{1}^{T}(g+G p)
$$

3.Conjugate Gradient for $Z^{\mathrm{T}} \boldsymbol{G} \boldsymbol{Z}$

- Assume $A^{\mathrm{T}}=Q_{1} R, Q_{2}=Z$. (see previous slide).
- The solution can be expressed as $x=Q_{1} x_{1}+Q_{2} x_{2}$.
- $x_{1}=R^{-\mathrm{T}} b$ cannot be changed. Reduce the original problem to the unconstrained one (see chap 15)

$$
\min _{x_{2}} \frac{1}{2} x_{2}^{T} Q_{2}^{T} G Q_{2} x_{2}+x_{2}^{T} Q_{2}^{T} c
$$

- The minimizer is the solution of (see chap 2)

$$
Q_{2}^{T} G Q_{2} x_{2}=-Q_{2}^{T} c
$$

- If $Q_{2}^{T} G Q_{2}$ is s.p.d., the CG can be used as a solver. (see chap 5)

4.The Projected CG method

- Use the same assumptions as the previous slide
- Define $P=Q_{2} Q_{2}{ }^{\text {T }}$, an orthogonal projector, by which $P x \in \operatorname{span}\left(Q_{2}\right)$ for all x.
- The projected CG method uses projected residual $r_{k+1}^{p}=P r_{k+1}\left(\right.$ see chap 5) instead of r_{k+1}.
- Matrix P is equivalent to $P=I-A^{\mathrm{T}}\left(A A^{\mathrm{T}}\right)^{-1} A$.
- Numerically unstable, use iterative refinement to improve the accuracy.

Inequality constraints

- Review the optimality conditions (chap 12)

$$
\begin{aligned}
G x^{*}+c-\sum_{i \in \mathbf{A}\left(x^{*}\right)} \lambda_{i}^{*} a_{i} & =0 \\
a_{i}^{T} x^{*} & =b_{i} \quad i \in \mathbf{E} \\
a_{i}^{T} x^{*} & \geq b_{i} \quad i \in \mathbf{I} \backslash \mathbf{A}\left(x^{*}\right) \\
\lambda^{*} & \geq 0 \quad i \in \mathbf{I} \cap \mathbf{A}\left(x^{*}\right)
\end{aligned}
$$

- Two difficulties (Figure 16.1, 16.2)
- Nonconvexity: more than one minimizer
- Degeneracy: The gradients of active constraints are linearly dependent

Methods for QP

1. Active set method for convex QP

- Only for small or medium sized problems

2. Interior point method

- Good for large problems

3. Gradient projection method

- Good when the constraints are bounds for variables

1.Active set method for QP

- Basic strategy

1. Find an active set (called working set, denoted \mathbf{W}_{k})
2. Check if x_{k} is optimal
3. If not, find p_{k} (solving an equality constrained QP)

$$
\begin{array}{cll}
\min _{p} & \frac{1}{2} p^{T} G p+g^{T} p & \\
\text { s.t. } & a_{i}^{T} p=0 \quad i \in \mathbf{W}_{k}
\end{array}
$$

4. Find $\alpha_{k} \in[0,1]$ such that $x_{k+1}=x_{k}+\alpha_{k} p_{k}$ satisfies all constraints $a_{i}, i \notin \mathbf{W}_{\mathrm{k}}$ (next slide)
5. If $\alpha_{k}<1$, update \mathbf{W}_{k}.

Step length

- Need find $\alpha_{k} \in[0,1]$ as large as possible such that $a_{i}^{\mathrm{T}}\left(x_{k}+\alpha_{k} p_{k}\right) \geq b_{i}, i \notin \mathbf{W}_{\mathrm{k}}$
- If $a_{i}{ }^{\mathrm{T}} p_{k} \geq 0$, then for all $\alpha_{k} \geq 0$, it satisfies anyway
- If $a_{i}{ }^{\mathrm{T}} p_{k}<0, \alpha_{k}$ need be $\leq\left(b_{i}-a_{i}{ }^{\mathrm{T}} x_{k}\right) / a_{i}{ }^{\mathrm{T}} p_{k}$.

$$
\alpha_{k}=\min \left(1, \min _{i \notin \mathbf{W}_{k}, a_{i}^{T} p_{k}<0} \frac{b_{i}-a_{i}^{T} x_{k}}{a_{i}^{T} p_{k}}\right)
$$

2.Interior point method for QP

- Please review the IPM for LP (chap 14)
- The problem $\min _{x} \quad q(x)=\frac{1}{2} x^{T} G x+x^{T} c$

$$
\text { s.t. } \quad A x \geq b
$$

- KKT conditions $G x-A^{T} \lambda+c=0$

$$
\begin{aligned}
A x-y-b & =0 \\
y_{i} \lambda_{i} & =0, i=1,2, \ldots, m \\
y, \lambda & \geq 0
\end{aligned}
$$

- Complementary measure:

$$
\mu=y^{T} \lambda / m
$$

- Nonlinear equation

$$
F(x, y, \lambda, \sigma \mu)=\left(\begin{array}{c}
G x-A^{T} \lambda+c \\
A x-y-b \\
Y \Lambda e-\sigma \mu e
\end{array}\right)
$$

- Using Newton's method to solve $F(x, y, \lambda, \sigma \mu)=0$

$$
\left(\begin{array}{ccc}
G & 0 & -A^{T} \\
A & -I & 0 \\
0 & \Lambda & Y
\end{array}\right)\left(\begin{array}{c}
\Delta x \\
\Delta y \\
\Delta \lambda
\end{array}\right)=\left(\begin{array}{c}
-r_{d} \\
-r_{p} \\
-\Lambda Y e+\sigma \mu e
\end{array}\right)
$$

where $r_{d}=G x-A^{T} \lambda+c$

$$
r_{p}=A x-y-b
$$

- Next step

$$
\left(x_{k+1}, y_{k+1}, \lambda_{k+1}\right)=\left(x_{k}, y_{k}, \lambda_{k}\right)+\alpha_{k}(\Delta x, \Delta y, \Delta \lambda)
$$

3.Gradient projection method

- Consider the bounded constrained problem

$$
\begin{array}{ll}
\min _{x} & q(x)=\frac{1}{2} x^{T} G x+x^{T} c \\
\mathrm{s.t.} & l \leq x \leq u
\end{array}
$$

- The gradient of $q(x)$ is $g=G x+c$.
- Bounded projection

$$
P(x, l, u)= \begin{cases}l & \text { if } x<l \\ x & \text { if } l<x<u \\ u & \text { if } x>u\end{cases}
$$

- The gradient projection is a piecewise linear path

$$
x(t)=P(x-\operatorname{tg}, l . u)
$$

- Piecewise linear path

$$
x(t)=\left\{\begin{array}{lll}
x_{1}+\Delta t p_{1} & \text { for } 0 \leq \Delta t<t_{1} & \left(x_{1}=x\right) \\
x_{2}+\Delta t p_{2} & \text { for } t_{1} \leq \Delta t<t_{2} & \left(x_{2}=x_{1}+t_{1} p_{1}\right) \\
\vdots & & \\
x_{n}+\Delta t p_{n} & \text { for } t_{n-1} \leq \Delta t \leq t & \left(x_{n}=x_{n-1}+t_{n-1} p_{n-1}\right)
\end{array}\right.
$$

- For each dimension

$$
\begin{aligned}
t_{i} & = \begin{cases}\left(x_{i}-u_{i}\right) / g_{i} & \text { if } g_{i}<0 \\
\left(x_{i}-l_{i}\right) / g_{i} & \text { if } g_{i}>0 \\
\infty & \text { otherwise }\end{cases} \\
x_{i}(t) & = \begin{cases}x_{i}-t_{i} & \text { if } t \leq t_{i} \\
x_{i}-t_{i} g_{i} & \text { otherwise }\end{cases} \\
p_{i}(t) & = \begin{cases}-g_{i} & \text { if } t_{i-1} \leq t_{i} \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

