CS5321 Numerical Optimization

15 Fundamentals of Algorithms for Nonlinear Constrained Optimization

Outline

$$\min_{x \in \mathbf{R}^n} f(x) \text{ subject to } \begin{cases} c_i(x) = 0 & i \in \mathbf{E} \\ c_i(x) \ge 0 & i \in \mathbf{I} \end{cases}$$

- E, I are index sets for equality and inequality constraints
- Dealing with constraints: equality and inequality
- Basic strategies
 - Freedom elimination algorithms
 - Merit functions, augmented Lagrangian, and filters
 - Second order correction and non-monotone techniques

Categorizing algorithms

- Freedom elimination algorithms
 - Algorithms for quadratic programming (chap 16)
 - Basic algorithms for many other methods
 - Sequential quadratic programming method (chap 18)
 - Active set methods
 - Interior point methods, barrier methods (chap 19)
- Merit functions and filters
 - Penalty and augmented Lagrangian methods (chap 17)
 - Filters, and non monotone methods (this chap)

2/26/2009

Equality constraints

- Ex: $\min f(x_1, x_2)$ s.t. $x_1 + x_2 = 1$
 - This equals to $\min f(x_1, 1-x_1)$
- Linear equality constraints: $\min_x f(x)$ s.t. Ax=b
 - *A* is $m \times n$. When m < n, the solution is not unique.
 - *x* can be expressed as $x=x_0+Zv$, where
 - x_0 is a particular solution to Ax=b.
 - The columns of *Z* spans the null space of *A*.
 - Vector v is of length n m.
 - The problem becomes $\min_{v} f(x_0 + Zv)$

Elimination of variables

- How to find x_0 and *Z*?
 - 1. QR decomposition of A^{T} .

$$A^{T} = Q \begin{pmatrix} R \\ 0 \end{pmatrix} = \begin{pmatrix} Q_{1} & Q_{2} \end{pmatrix} \begin{pmatrix} R \\ 0 \end{pmatrix} = Q_{1}R$$

- *Q*₁ is *n×m*, *Q*₂ is *n×(n−m)*, and *R* is *m×m*.
 Z = *Q*₂
- 2. Solve Ax=b and let the result be x_0 .

$$b = Ax = R^T Q_1^T x, x_0 = Q_1 R^{-T} b$$

Inequality constraints

• Inequality constraints cannot be operated as equality ones

Active set

- An inequality constraint $c_i(x) \ge 0$ is *active* if $c_i(x)=0$
- Active set $\mathbf{A}(x) = \mathbf{E} \cup \{i \in \mathbf{I} \mid c_i(x) = 0\}$
- Different active set results different solution. (example 15.1)
- Active set method: find the optimal active set
 - The *combinatorial difficulty*: search space is $2^{|I|}$.
 - The simplex method for LP is an active set method.

Merit functions

- Change a constrained problem $\min f(x)$ to an unconstrained one $\text{s.t.} \begin{cases} \min f(x) \\ c_i(x) = 0 & i \in \mathbf{E} \\ c_i(x) \ge 0 & i \in \mathbf{I} \end{cases}$
- The $\ell 1$ penalty function

$$f_1(x,\mu) = f(x) + \mu \sum_{i \in \mathbf{E}} |c_i(x)| + \mu \sum_{i \in \mathbf{I}} [c_i(x)]^{-1}$$

- The function $[z]^{-}=\max\{0,-z\}$. $\mu>0$ penalty parameter
- It is an *exact* merit function: the optimal solution of ϕ_1 is the optimal solution of the constrained problem
- The $\ell 2$ function $\phi_2(x,\mu) = f(x) + \mu \|c(x)\|_2$

 ϕ

Augmented Lagrangian

- The Fletcher's augmented Lagrangian $\phi_F(x,\mu) = f(x) + \lambda(x)^T c(x) + \frac{1}{2}\mu \sum_{i \in \mathbf{E}} c_i(x)^2$
 - $\lambda(x) = [A(x)A(x)^T]^{-1}A(x)\nabla f(x)$, A(x) the Jacobian of c(x)
 - ϕ_F is exact and smooth
- The standard augmented Lagrangian $L_A(x, \lambda, \mu) = f(x) + \lambda^T c(x) + \frac{1}{2} \mu \|c(x)\|_2^2$
 - Not exact

9

Filters

- Solves $\min_{x} f(x)$ and $\min_{x} h(x)$ simultaneously
 - Accept a new x⁺ if (f (x⁺), h(x⁺)) is not *dominated* by the previous pair (f (x), h(x))
 - (a, b) dominates (c, d) if $a \le c$ and $b \le d$.
- Filter is a list of (*f*, *h*) pairs, in which no pair dominates any other.
 - Pairs with sufficient decrease are also rejected.

Maratos effect

• An example that merit function and filter fail min $2(x_1^2 + x_2^2 - 1) - x_1$ s.t. $x_1^2 + x_2^2 - 1$ x_{1}, x_{2} The optimal solution is at (1,0). Let $x_k = \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}$ $f(x_k) = -\cos \theta, h(x_k) = 0$ • For $p_k = \begin{pmatrix} \sin^2 \theta \\ -\sin \theta \cos \theta \end{pmatrix}, x_{k+1} = x_k + p_k$ • x_{k+1} yields quadratic convergence, but increases f and h. $\frac{\|x_{k+1} - x^*\|}{\|x_k - x^*\|^2} = \frac{2\sin^2(\theta/2)}{|2\sin(\theta/2)|^2} = \frac{1}{2} \qquad \frac{f(x_{k+1}) = \sin^2\theta - \cos\theta}{h(x_{k+1}) = \sin^2\theta}$

2/26/2009

Second order correction

- Let A_k=A(x_k) be the Jacobian of constraints c(x_k).
 Suppose A_k, m×n, m<n, has full row rank.
- The linear approximation to c(x) at $x=x_k+p_k$ is $A_k p^{*+}c(x_k+p_k)$.
 - One solution for $A_k p^{*+}c(x_k + p_k) = 0$ is $p^* = -A_k^T (A_k A_k^T)^{-1}c(x_k + p_k)$
- If $x_{k+1} = x_k + p_k + p^*$, ||c(x)|| can be further decreased.
 - With $A_k p_k + c(x_k) = 0$ and proper step length.

Non-monotone techniques

- To resolve the Maratos effect, try steps p_k that increase *f* and *h*.
- *Watchdog strategy*: the merit function is allowed to increase on *t* iterations.
 - Typically, $t=5\sim8$
 - If after *t* iterations, the merit function does not decrease sufficiently, rollback

