CS5321 Numerical Optimization

13 Linear Programming:The Simplex Method

The standard form

- The standard form of linear programming is $Min_x z = c^T x$ subject to $Ax = b, x \ge 0$
 - Matrix *A* is an *m*×*n* matrix, where *m* is the number of constraints and *n* is the number of variables.
 - We assume *A* has full row rank and $m \le n$.
 - For $Ax \ge b$, add *slack variables*. Ax + z = b, $z \ge 0$.
 - For $Ax \le b$, subtract slack variables Ax z = b, $z \ge 0$.

Geometry of LP

- Feasible region Ω : the set of all feasible points
 - If Ω is empty, LP has no solution. (infeasible)
 - If Ω is nonempty, it is convex.
- If the object function is unbounded on Ω , LP has no solution.
- If LP is bounded and feasible, it can have either one or infinity many solutions.

Basic feasible point

- A point x is a basic feasible point (or a vertex of feasible polytope) if it is feasible and is not a linear combination of any other feasible points.
- If LP has solutions, at least one solution is a basic feasible solution. (Theorem 13.2)
- At a basic feasible point, at least *n*-*m* variables are zero.
 - The case it has more than *n*-*m* zero variables is called *degenerate*.

Basic variable and basis matrix

- The other are called *nonbasic* variables. (set to zero.)
- Let \mathcal{B} , \mathcal{N} be the index sets for basic/nonbasic variables.
- Variable *x*, *c*, and *A* can be rearranged according to basic/nonbasic variables.

$$x = \begin{pmatrix} x_B \\ x_N \end{pmatrix}, c = \begin{pmatrix} c_B \\ c_N \end{pmatrix}, A = \begin{pmatrix} B & N \end{pmatrix}$$

• *B*, an *n*×*n* nonsingular matrix, is called the *basis matrix*

Simplex multiplier

$$x = \begin{pmatrix} x_B \\ x_N \end{pmatrix}, c = \begin{pmatrix} c_B \\ c_N \end{pmatrix}, A = \begin{pmatrix} B & N \end{pmatrix}$$

- Since $x_N = 0$ at a basic feasible point
- Object function: $z = c^T x = c_B^T x_B + c_N^T x_N = c_B^T x_B$
- Constrains: $Ax = Bx_B + Nx_N = Bx_B = b$
- The basic variables are $x_B = B^{-1}b$ and therefore the object function $z = c_B^T x_B = c_B^T B^{-1}b$
- The simplex multiplier is $\lambda = (c_B^T B^{-1})^T = B^{-T} c_B$

Pricing

- Object function z = c^Tx = c^T_Bx_B + c^T_Nx_N could be decreased by changing nonbasic variables, x_N. Ax = Bx_B + Nx_N = b, x_B = B⁻¹b - B⁻¹Nx_N z = c^T_Bx_B + c^T_Nx_N = c^T_BB⁻¹b + (c^T_N - c^T_BB⁻¹N)x_N
 Plug in λ = (c^T_BB⁻¹)^T, z = c^T_BB⁻¹b + (c^T_N - λ^TN)x_N
- The vector $s_N = c_N N\lambda$ is called pricing.
 - If $s_N(i) < 0$, z can be decrease by increasing $x_N(i)$.
 - If all $s_N(i) \ge 0$, the optimal solution is founded.

The ratio test

- Select q s.t. $s_N(q) < 0$ is the smallest element in s_N and increase $x_N(q)$ until one element in x_B , say $x_B(p)$, becomes zero. (How to find p?) $x_B = B^{-1}b - B^{-1}Nx_N$ (previous slide.) $= B^{-1}b - B^{-1}N(:,q)x_N(q)$ ($x_N = 0$ except $x_N(q)$.)
 - Need $x_B(i) \ge 0$ for all *i*. If $B^{-1}N(:,q)(i) \le 0$, then $x_B(i) \ge 0$
 - Only need to consider *i* for $B^{-1}N(:,q)(i) \ge 0$
 - What if no such *i*? the unbounded case

$$p = \arg\min_{i=1..m} \left\{ \frac{(B^{-1}b)(i)}{(B^{-1}N(:,q))(i)} \big| (B^{-1}N(:,q))(i) \ge 0 \right\}$$

Pivoting

- Exchange p and q in \mathcal{B}, \mathcal{N} and update x_B, x_N and B.
- Let $d = (B^{-1}N(:,q)), \circ = (B^{-1}b)(p)/d(p)$
 - Update $x_B = x_B \gamma d$ and $x_N(q) = \gamma$
- Update *B*: replace B(p) with N(q) (How about B^{-1} ?)
 - It is a rank-1 update. Let B⁺ be the updated one. $B^+ = B + (N(:,q) - Be_p)e_p^T$
 - The Sherman-Morrison formula

$$(B^{+})^{-1} = B^{-1} - \frac{(B^{-1}N(:,q) - e_p)e_p^T B^{-1}}{1 + e_p^T (B^{-1}N(:,q) - e_p)}$$

2/26/2009

The simplex method

While (true)

- 1. Given \mathcal{B}, \mathcal{N} . $x_B = B^{-1}b$, $x_N = 0$ (Basic feasible point)
- 2. $\lambda = B^{-1}c_B, s_N = c_N N^T \lambda$ (Simplex multiplier, pricing)
- 3. If $s_N \ge 0$, stop (Found an optimal solution)
- 4. Select q s.t. $s_N(q) \le 0$, and solve Bd = N(:,q)
- 5. If $d \le 0$, stop (Unbounded case)
- 6. Compute $[\gamma, p] = \min_{d(i)>0} x_B(i)/d(i)$ (Ratio test)
- 7. Update $x_B = x_B \gamma d$ and $x_N(p) = \gamma$ (Pivoting)
- 8. Exchange p and q in \mathcal{B}, \mathcal{N} and update matrix B.

Remaining problems

- How to find the initial basic feasible point?
 - Two phase algorithm: add more slack variables to make the trivial point (0,...,0) feasible, and solve it until all additional slack variables become zero.
- How to resolve the degenerate case?
 - In degenerate case, the algorithm might pivot the same p and q repeatedly.
 - Perturb the constraints to avoid the degenerate case.

Complexity

- In each iteration, the most time consuming task is pricing, ratio test and update *B*. O(*mn*)
- The number of iterations is less than or equals to the number of basic feasible points, which is

$$\left(\begin{array}{c}n\\m\end{array}\right) = \frac{n!}{(n-m)!m!}$$

- The worst case time complexity is **exponential**.
 - Try n=2m. The number of iterations $> 2^{m}$.
- But practically, it terminates in *m* to 3*m* iterations.
 - Average case analysis and smoothed analysis.