CS5321
 Numerical Optimization

13 Linear Programming: The Simplex Method

The standard form

- The standard form of linear programming is
$\operatorname{Min}_{x} z=c^{\mathrm{T}} x$ subject to $A x=b, x \geq 0$
- Matrix A is an $m \times n$ matrix, where m is the number of constraints and n is the number of variables.
- We assume A has full row rank and $m \leq n$.
- For $A x \geq b$, add slack variables. $A x+z=b, \mathrm{z} \geq 0$.
- For $A x \leq b$, subtract slack variables $A x-z=b, \mathrm{z} \geq 0$.

Geometry of LP

- Feasible region Ω : the set of all feasible points
- If Ω is empty, LP has no solution. (infeasible)
- If Ω is nonempty, it is convex.
- If the object function is unbounded on Ω, LP has no solution.
- If LP is bounded and feasible, it can have either one or infinity many solutions.

Basic feasible point

- A point x is a basic feasible point (or a vertex of feasible polytope) if it is feasible and is not a linear combination of any other feasible points.
- If LP has solutions, at least one solution is a basic feasible solution. (Theorem 13.2)
- At a basic feasible point, at least $n-m$ variables are zero.
- The case it has more than $n-m$ zero variables is called degenerate.

Basic variable and basis matrix

- At a basic feasible point, variables that can be uniquely determined is called basic variables.
- The other are called nonbasic variables. (set to zero.)
- Let $\mathfrak{B}, \mathcal{N}$ be the index sets for basic/nonbasic variables.
- Variable x, c, and A can be rearranged according to basic/nonbasic variables.

$$
x=\binom{x_{B}}{x_{N}}, c=\binom{c_{B}}{c_{N}}, A=\left(\begin{array}{ll}
B & N
\end{array}\right)
$$

- B, an $n \times n$ nonsingular matrix, is called the basis matrix

Simplex multiplier

$$
x=\binom{x_{B}}{x_{N}}, c=\binom{c_{B}}{c_{N}}, A=\left(\begin{array}{cc}
B & N
\end{array}\right)
$$

- Since $x_{N}=0$ at a basic feasible point
- Object function: $z=c^{T} x=c_{B}^{T} x_{B}+c_{N}^{T} x_{N}=c_{B}^{T} x_{B}$
- Constrains: $A x=B x_{B}+N x_{N}=B x_{B}=b$
- The basic variables are $x_{B}=B^{-1} b$ and therefore the object function $z=c_{B}^{T} x_{B}=c_{B}^{T} B^{-1} b$
- The simplex multiplier is $\lambda=\left(c_{B}^{T} B^{-1}\right)^{T}=B^{-T} c_{B}$

Pricing

- Object function $z=c^{T} x=c_{B}^{T} x_{B}+c_{N}^{T} x_{N}$ could be decreased by changing nonbasic variables, x_{N}.

$$
\begin{aligned}
& A x=B x_{B}+N x_{N}=b, \quad x_{B}=B^{-1} b-B^{-1} N x_{N} \\
& z=c_{B}^{T} x_{B}+c_{N}^{T} x_{N}=c_{B}^{T} B^{-1} b+\left(c_{N}^{T}-c_{B}^{T} B^{-1} N\right) x_{N}
\end{aligned}
$$

- Plug in $\lambda=\left(c_{B}^{T} B^{-1}\right)^{T}, z=c_{B}^{T} B^{-1} b+\left(c_{N}^{T}-\lambda^{T} N\right) x_{N}$
- The vector $s_{N}=c_{N}-N \lambda$ is called pricing.
- If $s_{N}(i)<0, z$ can be decrease by increasing $x_{N}(i)$.
- If all $s_{N}(i) \geq 0$, the optimal solution is founded.

The ratio test

- Select q s.t. $s_{N}(q)<0$ is the smallest element in s_{N} and increase $x_{N}(q)$ until one element in x_{B}, say $x_{B}(p)$, becomes zero. (How to find p ?)

$$
\begin{array}{rlrl}
x_{B} & =B^{-1} b-B^{-1} N x_{N} & & \text { (previous slide.) } \\
& =B^{-1} b-B^{-1} N(:, q) x_{N}(q) & \left(x_{N}=0 \text { except } x_{N}(q) .\right)
\end{array}
$$

- Need $x_{B}(i) \geq 0$ for all i. If $B^{-1} N(:, q)(i)<0$, then $x_{\mathrm{B}}(i)>0$
- Only need to consider i for $B^{-1} N(:, q)(i) \geq 0$
- What if no such i ? the unbounded case

$$
p=\arg \min _{i=1 . . m}\left\{\left.\frac{\left(B^{-1} b\right)(i)}{\left(B^{-1} N(:, q)\right)(i)} \right\rvert\,\left(B^{-1} N(:, q)\right)(i) \geq 0\right\}
$$

Pivoting

- Exchange p and q in \mathscr{B}, \mathcal{N} and update x_{B}, x_{N} and B.
- Let $d=\left(B^{-1} N(:, q)\right),{ }^{\circ}=\left(B^{-1} b\right)(p) / d(p)$
- Update $x_{B}=x_{B}-\gamma d$ and $x_{N}(q)=\gamma$
- Update B : replace $B(p)$ with $N(q)$ (How about B^{-1} ?)
- It is a rank-1 update. Let B^{+}be the updated one.

$$
B^{+}=B+\left(N(:, q)-B e_{p}\right) e_{p}^{T}
$$

- The Sherman-Morrison formula

$$
\left(B^{+}\right)^{-1}=B^{-1}-\frac{\left(B^{-1} N(:, q)-e_{p}\right) e_{p}^{T} B^{-1}}{1+e_{p}^{T}\left(B^{-1} N(:, q)-e_{p}\right)}
$$

The simplex method

While (true)

1. Given $\mathfrak{B}, \mathcal{N} . x_{B}=B^{-1} b, x_{N}=0$ (Basic feasible point)
2. $\lambda=B^{-1} c_{B}, s_{N}=c_{N}-N^{\mathrm{T}} \lambda$ (Simplex multiplier, pricing)
3. If $s_{N} \geq 0$, stop (Found an optimal solution)
4. Select q s.t. $s_{N}(q)<0$, and solve $B d=N(:, q)$
5. If $d \leq 0$, stop
(Unbounded case)
6. Compute $[\gamma, \mathrm{p}]=\min _{\mathrm{d}(\mathrm{i})>0} x_{B}(i) / d(i) \quad$ (Ratio test)
7. Update $x_{B}=x_{B}-\gamma d$ and $x_{N}(p)=\gamma \quad$ (Pivoting)
8. Exchange p and q in \mathscr{B}, \mathcal{N} and update matrix B.

Remaining problems

- How to find the initial basic feasible point?
- Two phase algorithm: add more slack variables to make the trivial point $(0, \ldots, 0)$ feasible, and solve it until all additional slack variables become zero.
- How to resolve the degenerate case?
- In degenerate case, the algorithm might pivot the same p and q repeatedly.
- Perturb the constraints to avoid the degenerate case.

Complexity

- In each iteration, the most time consuming task is pricing, ratio test and update $B . \mathrm{O}(m n)$
- The number of iterations is less than or equals to the number of basic feasible points, which is

$$
\binom{n}{m}=\frac{n!}{(n-m)!m!}
$$

- The worst case time complexity is exponential.
- Try $n=2 m$. The number of iterations $>2^{\mathrm{m}}$.
- But practically, it terminates in m to $3 m$ iterations.
- Average case analysis and smoothed analysis.

