CS5321
 Numerical Optimization

12 Theory of Constrained Optimization

General form

$$
\min _{x \in \mathbf{R}^{n}} f(x) \text { subject to } \begin{cases}c_{i}(x)=0 & i \in \mathbf{E} \\ c_{i}(x) \geq 0 & i \in \mathbf{I}\end{cases}
$$

- \mathbf{E}, \mathbf{I} are index sets for equality and inequality constraints
- Feasible set $\Omega=\left\{x \mid c_{i}(x)=0, i \in \mathbf{E} ; c_{i}(x) \geq 0, i \in \mathbf{I}\right\}$
- Outline
- Equality and inequality constraints
- Lagrange multipliers
- Linear independent constraint qualification
- First/second order optimality conditions
- Duality

A single equality constraint

- An example $\min _{x} f(x)=x_{1}+x_{2}$ subject to $c_{1}=x_{1}^{2}+x_{2}^{2}=2$ $\nabla f(x)=\binom{1}{1} \nabla c_{1}(x)=\binom{2 x_{1}}{2 x_{2}}$

- The optimal solution is at $\binom{x_{1}^{*}}{x_{2}^{*}}=\binom{-1}{-1}$
- Optimal condition: $\nabla f\left(x^{*}\right)=\lambda^{*} \nabla c_{1}\left(x^{*}\right)$
- $\lambda^{*}=-1 / 2$ in the example

A single inequality constraint

- Example: $\min _{x} f(x)=x_{1}+x_{2}$ subject to ${ }_{c}^{x}: 2-x_{1}^{2}-x_{2}^{2} \geq 0$
- Case 1: the solution is inside c_{1}.
- Unconstrained optimization $\nabla f\left(x^{*}\right)=0$
- Case 2: the solution is on the boundary of c_{1}. - Equality constraint $\left\{\begin{array}{l}c_{1}\left(x^{*}\right) \\ \nabla f\left(x^{*}\right)\end{array}=0 \quad \lambda^{*} \nabla c_{1}\left(x^{*}\right)\right.$
- Complementarity condition: $\lambda^{*} c_{1}\left(x^{*}\right)=0$
- Let $\lambda^{*}=0$ in case 1 .

Lagrangian function

- Define $\mathcal{L}(x, \lambda)=f(x)-\lambda c_{1}(x)$
- $\nabla_{\lambda} \mathcal{L}(x, \lambda)=-c_{1}(x)$
- $\nabla_{x} \mathcal{L}(x, \lambda)=\nabla f(x)-\lambda \nabla c_{1}(x)$
- The optimality conditions of inequality constraint

$$
\begin{cases}c_{1}\left(x^{*}\right) & =0 \\ \nabla f\left(x^{*}\right) & =\lambda_{1}^{*} \nabla c_{1}\left(x^{*}\right)\end{cases}
$$

which equal to $\nabla_{\lambda} \mathcal{L}(x, \lambda)=0$ and $\nabla_{x} \mathcal{L}(x, \lambda)=0$.

- $\mathcal{L}(x, \lambda)$ is called the Lagrangian function; λ is called the Lagrangian multiplier

Lagrangian multiplier

- At optimal solution $x^{*}, \nabla f\left(x^{*}\right)=\lambda_{1} \nabla c_{1}\left(x^{*}\right)$
- If $c_{1}($.$) changes \delta$ unit, $f($.$) changes \approx \lambda_{1} \delta$ unit.
- λ_{1} is the change of f per unit change of c_{1}.
- λ_{1} means the sensitivity of f to c_{i}.
- λ_{1} is called the shadow price or the dual variable.

Constraint qualification

- Active set $\mathbf{A}(x)=\mathbf{E} \cup\left\{i \in \mathbf{I} \mid c_{i}(x)=0\right\}$
- Linear independent constraint qualification (LICO)
- The gradients of constraints in the active set $\left\{\nabla c_{i}(x) \mid i \in \mathbf{A}(x)\right\}$ are linearly independent
- A point is called regular if it satisfies LICO.
- Other constraint qualifications may be used.

$$
\begin{aligned}
c_{1}(x) & =1-x_{1}^{2}-\left(x_{2}-1\right)^{2} \geq 0 \\
c_{2}(x) & =-x_{2} \geq 0 \\
x & =(0,0)
\end{aligned}
$$

First order conditions

- A regular point that is a minimizer of the unconstrained problem must satisfies the KKT condition (Karush-Kuhn-Tucker)

$$
\begin{aligned}
\nabla_{x} L\left(x^{*}, \lambda^{*}\right) & =0 \\
c_{i}\left(x^{*}\right) & =0 \quad \text { for all } i \in \mathbf{E} \\
c_{i}\left(x^{*}\right) & \geq 0 \quad \text { for all } i \in \mathbf{I} \\
\lambda^{*} & \geq 0 \quad \text { for all } i \in \mathbf{I} \\
\lambda^{*} c_{i}\left(x^{*}\right) & =0 \quad \text { for all } i
\end{aligned}
$$

- The last one is called complementarity condition

Second order conditions

- The critical cone $C\left(x^{*}, \lambda^{*}\right)$ is a set of vectors that
$w \in C\left(x^{*}, \lambda^{*}\right) \Leftrightarrow \begin{cases}\nabla c_{i}\left(x^{*}\right)^{T} w=0 & i \in \mathbf{E} \\ \nabla c_{i}\left(x^{*}\right)^{T} w=0 & i \in \mathbf{I} \cap \mathbf{A}\left(x^{*}\right) \text { with } \lambda_{i}^{*}>0 \\ \nabla c_{i}\left(x^{*}\right)^{T} w \geq 0 & i \in \mathbf{I} \cap \mathbf{A}\left(x^{*}\right) \text { with } \lambda_{i}^{*}=0\end{cases}$
- Suppose x^{*} is a solution to a constrained optimization problem and λ^{*} satisfies KKT conditions. For all $w \in C\left(x^{*}, \lambda^{*}\right)$,

$$
w^{T} \nabla_{x x}^{2} L\left(x^{*}, \lambda^{*}\right) w \geq 0
$$

Projected Hessian

- Let $A\left(x^{*}\right)=\left[\nabla c_{i}\left(x^{*}\right)\right]_{i \in \mathbf{A}\left(x^{*}\right)}: \mathbf{A}\left(\mathrm{x}^{*}\right)$ is the active set.
- It can be shown that $C\left(x^{*}, \lambda^{*}\right)=\operatorname{Null} A\left(x^{*}\right)$
- Null $A\left(x^{*}\right)$ can be computed via QR decomposition

$$
A\left(x^{*}\right)^{T}=Q\binom{R}{0}=\left(\begin{array}{ll}
Q_{1} & Q_{2}
\end{array}\right)\binom{R}{0}=Q_{1} R
$$

- $\operatorname{span}\left\{Q_{2}\right\}=\operatorname{Null} A\left(x^{*}\right)$
- Define projected Hessian $H=Q_{2}^{T} \nabla_{x x}^{2} L\left(x^{*}, \lambda^{*}\right) Q_{2}$
- The second order optimality condition is that H is positive semidefinite.

Duality: An example

$$
\min _{x \geq 0} f(x)=3 x_{1}+4 x_{2}
$$

subject to $c_{1}: x_{1}+x_{2} \geq 3$

$$
c_{2}: \quad 2 x_{1}+0.5 x_{2} \geq 2
$$

- Find a lower bound for $f(x)$ via the constraints
- Ex: $f(x)>3 c_{1} \Rightarrow 3 x_{1}+4 x_{2}>3 x_{1}+3 x_{2} \geq 9$
- Ex: $f(x)>2 c_{1}+0.5 c_{2} \Rightarrow 3 x_{1}+4 x_{2}>3 x_{1}+1.25 x_{2} \geq 7$
- What is the maximum lower bound for $f(x)$?

$$
\max _{y \geq 0} g(y)=3 y_{1}+2 y_{2} \quad \text { s.t. } \begin{array}{r}
y_{1}+2 y_{2} \leq 3 \\
y_{1}+0.5 y_{2} \leq 4
\end{array}
$$

Dual problem

- Primal problem $\min _{x} f(x)$ s.t. $c_{i}(x) \geq 0$

1. No equality constraints.
2. Inequality constraints c_{i} are concave. ($-c_{\mathrm{i}}$ are convex)

- Let $c(x)=\left[c_{1}(x), \ldots c_{m}(x)\right]^{\mathrm{T}}$. The Lagrangian is $\mathcal{L}(x, \lambda)=f(x)-\lambda^{\mathrm{T}} c(x), \quad \lambda \in R^{m}$.
- The dual object function is $q(\lambda)=\inf _{x} \mathcal{L}(x, \lambda)$
- If $\mathcal{L}(:, \lambda)$ is convex, $\inf _{x} \mathcal{L}(x, \lambda)$ is at $\nabla_{x} \mathcal{L}(x)=$,
- The dual problem is $\max _{\lambda} q(x)$ s.t. $\lambda \geq 0$
- If $\mathcal{L}(:, \lambda)$ is convex, additional constraint is $\nabla_{x} \mathcal{L}(x)=$,

